
Proceedings

1
st
 International Workshop on

Mining Software Repositories

MSR 2004

Proceedings

1
st
 International Workshop on

Mining Software Repositories

MSR 2004

Edinburgh, Scotland, United Kingdom

25th May 2004

Co-located With

International Conference on

Software Engineering

(ICSE 2004)

Edited by

Ahmed E. Hassan, Richard C. Holt, and Audris Mockus

Contents
International Workshop on Mining Software Repositories

MSR 2004

Message from the Workshop Chairs.. i

Program Committee.. ii

Additional Reviewers ... ii

Program..iii

Infrastructure and Extraction

Preprocessing CVS Data for Fine-Grained Analysis..2
Thomas Zimmermann and Peter Weißgerber

The Perils and Pitfalls of Mining SourceForge..7
James Howison and Kevin Crowston

Research Infrastructure for Empirical Science of F/OSS..12
Les Gasser, Gabriel Ripoche, and Robert J. Sandusky

Mining CVS repositories, the softChange experience..17
Daniel German

Text is Software Too..22
Alexander Dekhtyar, Jane Huffman Hayes, and Tim Menzies

Integration and Presentation

GluTheos: Automating the Retrieval and Analysis of Data from Publicly Available Software

Repositories...28
Gregorio Robles, Jesus M. González-Barahona, and Rishab Aiyer Ghosh

Using CVS Historical Information to Understand How Students Develop Software....................32
Ying Liu, Eleni Stroulia, Kenny Wong, and Daniel German

Database Techniques for the Analysis and Exploration of Software Repositories........................37
Omar Alonso, Premkumar T. Devanbu, and Michael Gertz

Empirical Project Monitor: A Tool for Mining Multiple Project Data..42
Masao Ohira, Reishi Yokomori, Makoto Sakai, Ken-ichi Matsumoto, Katsuro Inoue and Koji Torii

System Understanding and Change Patterns

Mining Version Control Systems for FACs (Frequently Applied Changes)..................................48
Filip Van Rysselberghe and Serge Demeyer

Mining the Software Change Repository of a Legacy Telephony System.....................................53
Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan Matwin

Four Interesting Ways in Which History Can Teach Us About Software......................................58
Michael Godfrey, Xinyi Dong, Cory Kapser, and Lijie Zou

Predicting Source Code Changes by Mining Revision History..63
Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll

Mining Software Usage Data..64
Mohammad El-Ramly and Eleni Stroulia

Defect Analysis

Bug Driven Bug Finders...70
Chadd Williams and Jeffrey K. Hollingsworth

Mining Repositories to Assist in Project Planning and Resource Allocation.................................75
Tim Menzies, Justin S. Di Stefano, Chris Cunanan, and Robert (Mike) Chapman

Bug Report Networks: Varieties, Strategies, and Impacts in a F/OSS Development

 Community...80
Robert J. Sandusky, Les Gasser, and Gabriel Ripoche

A Tool for Mining Defect-Tracking Systems to Predict Fault-Prone Files....................................85
Thomas J. Ostrand and Elaine J. Weyuker

Towards Understanding the Rhetoric of Small Changes..90
Ranjith Purushothaman and Dewayne E. Perry

Process and Community Analysis

Data Mining for Software Process Discovery in Open Source Software Development

Communities..96
Chris Jensen and Walt Scacchi

Applying Social Network Analysis to the Information in CVS Repositories...........................101
Luis Lopez-Fernandez, Gregorio Robles, and Jesus M. Gonzalez-Barahona

Mining a Software Developer’s Local Interaction History...106
Kevin Schneider, Carl Gutwin, Reagan Penner, and David Paquette

Software Reuse

LASER: A Lexical Approach to Analogy in Software Reuse...112
Rushikesh Amin, Mel Ó Cinnéide, and Tony Veale

A Case Study on Recommending Reusable Software Components

 Using Collaborative Filtering...117
 Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

Template Mining in Source-Code Digital Libraries...122
Yuhanis Yusof and Omer F. Rana

Multi-Project Software Engineering: An Example..127
Pankaj K Garg, Thomas Gschwind, and Katsuro Inoue

Author Index..133

Message From Workshop Chairs

MSR 2004

Welcome to MSR 2004, the 1
st
 international workshop on Mining Software Repositories.

MSR 2004 brings together researchers and practitioners to consider methods of using

data stored in software repositories to further understanding of software development

practices. We expect the presentations and discussions in this workshop to facilitate the

definition of challenges, ideas and approaches to transform software repositories from

static record keeping systems to active repositories used by researchers to gain empirical

understanding of software development, and by software practitioners to predict and plan

various aspects of their project.

We received a large number of submissions – 38 papers from 14 countries. After the

review process, 26 papers were chosen for publication. Selected papers were chosen for

presentation to spur discussion of key concepts. We allocated one hour in the middle of

the day where attendees are encouraged to bring in their laptops and present their

work/tools to others. We hope this provides interested parties the opportunity to learn

more details about other work in the field.

We are delighted that a selected number of papers will be invited for a special issue of the

IEEE Transactions on Software Engineering.

We thank Richard van de Stadt for providing round the clock support for the online

submission system. We thank Michael Godfrey and Nenad Medvidovic for their prompt

replies to our inquires on various workshop organization details. We are grateful for the

excellent and professional review job done by the reviewers on such a tight schedule.

Ahmed E. Hassan

Richard C. Holt

 University of Waterloo

Audris Mockus

 Avaya Labs Research

i

Program Committee

MSR 2004
Harald Gall, University of Vienna, Austria

Les Gasser, University of Illinois at Urbana Champaign, USA

Daniel German, University of Victoria, Canada

James Herbsleb, Carnegie Mellon University, USA

Katsuro Inoue, Osaka University, Japan

Philip Johnson, University of Hawaii, USA

Dewayne Perry, University of Texas, USA

Andreas Zeller, Saarland University, Germany

Additional Reviewers

MSR 2004
Omar Alonso, University of California at Davis, USA

Mohammed El-Ramly, University of Leicester, UK

Mike Godfrey, University of Waterloo, Canada

Chris Jensen, University of California, Irvine, USA

Timothy C. Lethbridge, University of Ottawa, Canada

Ying Liu, University of Alberta, Canada

Amir Michail, University of New South Wales, Australia

Parastoo Mohagheghi, Ericsson, Norway

Gabriel Ripoche, University of Illinois at Urbana Champaign, USA

Robert J. Sandusky, University of Illinois at Urbana Champaign, USA

Jelber Sayyad Shirabad, University of Ottawa, Canada

Kevin Schneider, University of Saskatchewan, Canada

Elaine J. Weyuker, AT&T Research, USA

Jingwei Wu, University of Waterloo, Canada

Zhenchang Xing, University of Alberta, Canada

ii

MSR 2004: International Workshop on Mining Software Repositories
msr.uwaterloo.ca

9:00-9:15 Welcome and Introduction
Ahmed E. Hassan, Richard C. Holt, and Audris Mockus

9:15-10:30

Session 1: Infrastructure and Extraction

Research Infrastructure for Empirical Science of FOSS
Les Gasser, Gabriel Ripoche, and Robert Sandusky (University of Illinois at Urbana Champaign)
Preprocessing CVS Data for Fine-Grained Analysis
Thomas Zimmermann (Saarland University) and Peter Weißgerber (Catholic University of Eichstätt-
Ingolstadt)
Discussion Leader: Daniel German (University Of Victoria)

10:30-11:00 Coffee Break

10:30-11:15

Session 2: Integration and Presentation

Using CVS historical information to understand how students develop software
Ying Liu,Eleni Stroulia, Ken Wong (University of Alberta), and Daniel German (University of Victoria)
Discussion Leader: Katsuro Inoue (Osaka University)

11:15-12:00

Session 3: System Understanding and Change Patterns

Four Interesting Ways in Which History Can Teach Us About Software
Michael Godfrey, Cory Kapser, Xinyi Dong, and Lijie Zou (University of Waterloo)
Discussion Leader: Annie Ying (IBM T.J. Watson Research Center)

12:30-1:30 Lunch

1:30-2:30 Demos and Walkaround Presentations

2:30-3:30

Session 4: Defect Analysis

Towards Understanding the Rhetoric of Small Changes
Ranjith Purushothaman (Dell Computer Corporation) and Dewayne Perry (University of Texas at
Austin)
Bug Driven Bug Finders
Chadd Williams and Jeff Hollingsworth (University of Maryland)
Discussion Leader: Thomas Ostrand (AT&T Labs - Research)

3:30-4:00 Coffee Break

iii

4:00-4:30

Session 5: Process and Community Analysis

Applying Social Network Analysis to the Information in CVS Repositories
Luis Lopez-Fernandez, Gregorio Robles, and Jesus M. Gonzalez-Barahona (Rey Juan Carlos
University)
Discussion Leader: Chris Jensen (University of California, Irvine)

4:30-5:00

Session 6: Software Reuse

A Case Study on Recommending Reusable Software Components using
Collaborative Filtering
Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick (University College Dublin)
Discussion Leader: Pankaj Garg (Zeesource)

5:00-5:30 Wrap-up: Common Themes and Future Direction
Ahmed E. Hassan, Richard C. Holt and Audris Mockus

iv

 Infrastructure and Extraction

Preprocessing CVS Data for Fine-Grained Analysis

Thomas Zimmermann
Saarland University, Saarbrücken, Germany

tz@acm.org

Peter Weißgerber
Cath. Univ. of Eichstätt-Ingolstadt, Germany

peter.weissgerber@ku-eichstaett.de

Abstract

All analyses of version archives have one phase in com-
mon: the preprocessing of data. Preprocessing has a direct
impact on the quality of the results returned by an analy-
sis. In this paper we discuss four essential preprocessing
tasks necessary for a fine-grained analysis of CVS archives:
(a) data extraction, (b) transaction recovery, (c) mapping
of changes to fine-grained entities, and (d) data cleaning.
We formalize the concept of sliding time windows and show
how commit mails can relate revisions to transactions. We
also present two approaches that map changes to the af-
fected building blocks of a file, e.g. functions or sections.

1. Introduction

One of the first papers that analyzed version archives has
the striking title “If Your Version Control System Could
Talk. . . ”[1]. In these days, many CVS [4] archives are freely
available, e.g. via SourceForge.net. They all provide lots
of information on the evolution of a software project: who
changed what and why.

Such data enables many new analyses. Besides the obvi-
ous analysis of software evolution, it is also valuable input
for program analysis (e.g. [2, 10, 19]), as well as for met-
rics (e.g. [3]). All approaches have one thing in common—
they have to preprocess data, because direct access via CVS
clients is rather slow. Additionally, some important infor-
mation is not accessible via CVS: Which files have been
changed in conjunction, and which methods have been af-
fected by a change. The latter is essential for fine-grained
analysis of version archives, e.g. on function-level.

In this paper, we focus on four preprocessing tasks that
are performed by most analyses:

• Data Extraction—In Section 2 we present a light-
weight and fast approach to mirror CVS information
in a database.

• Restoring Transactions—Many analyses require the
information which files have been changed in conjunc-

tion. In Section 3 we present two approaches that re-
store such transactions based on sliding time windows
and commit mails.

• Mapping Changes to Entities—CVS stores only
changes on files. For an analysis of functions, changes
have to be examined in more detail. Section 4 presents
an extensible approach that determines entities af-
fected by a change on a file.

• Data Cleaning—Some transactions require special
treatments by an analysis: For example, large transac-
tions often result from infrastructure changes. Merge
transactions simply reproduce changes and thus are of-
ten noise. Section 5 discusses such topics.

Preprocessing is a prerequisite for a fast access to CVS data.
This data is enriched by additional information (transac-
tions, fine-granular changes). Section 6 gives further ref-
erences to related work, and Section 7 concludes the paper.

2. Data Extraction

One goal for preprocessing is to enable a fast access to the
content of a CVS archive. A common solution extracts all
data from the CVS repository and mirrors it in a database.

In general, it depends on the analysis what data needs to
be extracted. For instance, if we analyze software evolution
we are interested in everything, including deleted files. If
the purpose of our analysis is to guide programmers along
related changes [20], we need only existing files, because
suggesting that the user should change deleted files would
be awkward. In this case it suffices to extract only a subset
of all files stored in the repository. But in practice, the filter-
ing should be performed within the analysis and not within
the extraction.

The extraction calls the CVS log command in the root
directory of the project to be extracted. This returns infor-
mation on all files that have ever existed in the repository.
We parse this output as illustrated in Figure 1 and store the
data in appropriate tables:

• Obviously, all files and directories are stored.

2

��������	�
��
�
�������
��������������������

����
���
�������
���
����
��������������
������������	��
��������������������

����
���
�������
���
����
������������
����	� � !
"�����	
�����	�������
�����������	
�#
"�������
��	

�$%&!	� � '
�$%&'�	� � '
���
�$%()	� � *
+,-$ $*	� � *�.�)
����$+,-$ $*	� � *
�$%(� � *
���

��#/������"���������	��
���������������	�)01������������������	�)0
�����������	
2222222222222222222222222222
��������� � !
����	�)..0
.
 %� *	0(0)1��������	����������1�������	�34�1�������	�5 �2
6����������#����������)..0
2222222222222222222222222222
��������� � '
����	�)..%
)
 � ')	%!1��������	����������1�������	�34�1�������	�5 *�2)'
0'.0.
2222222222222222222222222222
��������� � *
����	�)..%
.*
)'� '	 %)01��������	��
����1�������	�34�1�������	�5*�2
"�������	�� � *�)1
777��
��#�����
�������777
2222222222222222222222222222
���
2222222222222222222222222222
��������� � *�)�
����	�)..0
.
)� &	*%	 1��������	�����
���1�������	�34�1�������	�5 *�2)'
8�����/����93:,
;;;

�����

����

	
���
��

��
����
���

���������

�
����������

�

Figure 1. Data Extraction

• Information about single revisions is stored in the ta-
ble Revisions. The author and the log message are
stored in the table Transactions, because in this step,
we treat each revision as one transaction—Section 3
groups several revisions/transactions together.

• With CVS the user can set symbolic names for revi-
sions. These symbolic names are called tags and are
frequently used to mark releases or other events.

• The table Branches records the branch points and
branch names. This information has to be gathered
from two different sections of the CVS log output (see
Figure 1). Branch names are symbolic names for re-
vision numbers that contain a zero, e.g. JDK 1 5
for revision number 1.15.0.2. The branch prefix is
constructed by removing the zero—in our example it
is 1.15.2. The link between the section “symbolic
names” and the branch point is established by a hash
map using the branch prefix as keys.

Note that all preprocessing steps can also be done in-
crementally—it is only necessary to preprocess the data for
new revisions instead of working on the whole repository
again. To determine new revisions several approaches ex-
ist: Many open-source projects send an email to a mailing
list for each commit. This approach is based on the commit-
info and loginfo files that can be used to track commits on
the server-side. A possibility to get recently changed files
on the client-side is the CVS rdiff operation (with option -s
for summary) or the CVS status operation.

3. Restoring Transactions

CVS does not keep track of which files have been changed
in conjunction in one commit operation. Often this infor-
mation is required for an analysis, e.g. for determination of
logical coupling [10, 19]. An obvious solution is to con-
sider all changes by the same developer, with the same log

���������	
��

������������

���� ����� ����� ����� �����

(a) Fixed Time Window

���������	
��

������������

���	
���������
	� �!��
"�	
����

���� ����� ����� ����� �����

#"���!��$����%�!�	&

(b) Sliding Time Window

Figure 2. Fixed vs. Sliding Time Window

message, made at the same time as one transaction. The
term “same time” is inaccurate in this context, because usu-
ally commit operations take several seconds or minutes—
especially if many files are involved. In practice, many
approaches consider not only checkins at the same time as
candidates, but also checkins during a time interval:

Fixed Time Windows restrict the maximal duration of a
transaction. The time interval always begins at the first
checkin. This approach has been used by [15, 10] for
the analysis of CVS archives.

Sliding Time Windows restrict the maximal gap between
two subsequent checkins of a transaction. The begin of
the time interval is shifted to the most recent checkin.
Thus, this approach can recognize transactions that
take longer to complete than the duration of the time
window. This approach originates from ChangeLog
programs like cvs2cl [9] or CVSps [13].

Figure 2(a) illustrates fixed time windows: After the
checkin of A:1.3 both checkins B:1.2 and C:1.4 are part of
the same transaction, because they are visible within the
time window (drawn in white). Figure 2(b) shows that a
sliding time window additionally considers D:1.3 and E:1.5,
because the time window “slides” from checkins A:1.3 to
finally E:1.5. The transaction is closed after E:1.5 as no fur-
ther checkins are visible within the time window.

Formally, using a sliding time window of 200 seconds,
for all checkins δ1, . . . , δk (sorted by time(δi)) that are part
of a transaction ∆, the following conditions hold:

∀δi ∈ ∆ : author(δi) = author(δ1)
∀δi ∈ ∆ : log message(δi) = log message(δ1)

∀i ∈ {2, . . . , k} : |time(δi) − time(δi−1)| ≤ 〈200 sec〉
Additionally, each file can only be part of a single trans-

action once, because CVS does not allow to commit two
revisions of a file at the same time:

∀δa, δb ∈ ∆ : δa �= δb ⇒ file(δa) �= file(δb)

3

The algorithm for grouping checkins to transactions is
straightforward: Simply sort checkins by author, checkin
time, and log message. Iterate over checkins in this order:
Each time the author or log message differs to the ones of
the previous checkin or the time window is exceeded start a
new transaction.

Based on our experience, sliding time windows are supe-
rior to fixed time windows, because they deal with transac-
tions of any duration. The selection of the length of a time
window (fixed or sliding) depends on the analyzed project
and the analysis itself. The time window should be chosen
based on the assumption on how long it takes to check in
the largest file with high network latency. Up to now, most
lengths of time windows are arbitrary: They range from two
to four minutes.

In our approach we chose 200 seconds which is three
minutes plus a buffer of 20 seconds. Without this buffer the
end of the time window can clash with the release of a CVS
lock. In this case the continuation of an interrupted transac-
tion is considered as a new transaction. Using such a time
window for the GNU Compiler Collection (GCC), the aver-
age duration of a transaction is 6.2 seconds and the maximal
duration 1 hour 32 minutes1.

Time windows are a good approximation for restoring
transactions from CVS. A more precise solution is based on
commit mails—that are mails sent to developer mailing lists
after a commit. Such a mail contains the committer, the
timestamp, the modified files, and the log message. With
this information it is straightforward to relate files to revi-
sions and then to transactions. Commit mails are available
for many open-source projects, e.g. GCC.

4. Mapping Changes to Entities

CVS provides only information on files and differences, but
not which function has been changed. For an analysis of
such fine-grained entities, another preprocessing step is re-
quired: Each revision is compared with its predecessor and
the changes are mapped to syntactic components of files.
If a revision is a merge of multiple predecessors, it should
get a special treatment (see Section 5). A revision with no
predecessors is compared against an empty file.

Fine-grained changes can be computed using a diff -tool
and a light-weight analysis that creates the building block
of files. This approach is open to everything: source code,
documentation, XML files and even diagrams. For a change
from revision r1 to r2 we compute the entities as follows:

1. Create mappings Ei : int → entities from source
code lines to entities using a light-weight analysis (e.g.
counting brackets). The mapping for revision r1 is
called E1 and for r2 it is E2.

1Transaction “dummy import to prevent merge lossage” (4081 files)

���

���

���

���

���

���

���

���

���

�	
���
���
�

�	
���
���
�

������
�
��
�
�

�����������

��������

�
�
����������������

�
�
�������

�
�
��������������������

�
�
������������

Figure 3. Map Changes to Entities

2. Perform a diff between r1 and r2. The results are the
lines affected by the change: lines L1 for revision r1

and L2 for r2.

3. The entities (functions, sections) in r1 affected by the
change are C1 (respectively C2 for r2):

C1 =
⋃

l∈L1

E1(l) C2 =
⋃

l∈L2

E2(l)

4. Thus the change from revision r1 to r2. . .

– actually changed entities C1 ∩ C2

– added entities C2 \ C1

– removed entities C1 \ C2

Figure 3 shows an example for the above algorithm. First
each revision is decomposed into its building blocks—
in our example functions. Then a diff between the two
revisions r1 and r2 is calculated. The result is used
to create the sets L1 = {14, . . . , 17, 42} and L2 =
{14, 15, 16, 42, . . . , 67}. Next, each line is mapped to its
enclosing function and the sets C1 = {D()} and C2 =
{D(), F()} are created. Now we know that the function D()
has been modified (C1 ∩ C2) and F() has been inserted
(C2 \ C1).

This approach has two weaknesses: First, its quality de-
pends largely on the precision of the used diff tool, and sec-
ond, it determines changes only based on lines, rather than
on exact source code positions. Thus, in some rare cases
this approach recognizes too many changed entities.

A more precise but more expensive approach first deter-
mines all entities that occur in both revisions. Then it com-
pares the source codes of each of those entities. In other
words, the diff operation is pushed from file-level to entity-
level:

1. Determine all entities E1 of revision r1 and all entities
E2 of revision r2.

2. The added entities are E2\E1, and the removed entities
are E1 \ E2.

4

3. All entities in E1∩E2 may have been changed. Whether
an entity e has been actually changed is decided by
performing a diff between the source-code of e in r1

and its source-code in r2.

For the example of Figure 3 the above algorithm first deter-
mines that the function F() is new, because it appears only
in revision r2. Next, it compares for each function the re-
spective parts and recognizes that D() has been changed.

The ECLIPSE platform [16] provides a powerful and ex-
tensible framework for comparing files. Both approaches
described above can be realized using this framework:

• Range Differencer—The RangeDifferencer2 class
compares two versions based on tokens. This ap-
proach is based on the traditional diff algorithm [14].
The tokens are created using classes implementing the
interface ITokenComparator3, e.g. for lines the class
DocLineComparator4. The calculated differences are
returned in a list.

• Structure Merge Viewer—The Differencer5 class com-
pares two versions of any given hierarchical struc-
ture and returns a delta tree describing each change
in detail. The structure is created with an own im-
plementation of the interface IStructureCreator6. The
fearless can use existing internal classes7, e.g. the
JavaStructureCreator8.

Furthermore, ECLIPSE provides easy access to JAVA ab-
stract syntax trees and facilitates further analysis of source
code. The only drawback is that many of those features
cannot be executed from the command line.

5. Data Cleaning

The previous sections described the extraction of data that
is needed for fine-grained analysis. However, several issues
call for identifying noise and appropriate cleaning (i.e. a
special treatment). Large transactions which often result
from infrastructure changes and merge transactions which
simply reproduce changes are such noise.

Large Transactions

Large transactions are very frequent in real-life. Here are
two examples from OPENSSL:

2compare.rangedifferencer.RangeDifferencer
3compare.contentmergeviewer.ITokenComparator
4compare.internal.DocLineComparator
5compare.structuremergeviewer.Differencer
6compare.structuremergeviewer.IStructureCreator
7Read [17] before you decide to use internal classes.
8jdt.internal.ui.compare.JavaStructureCreator

������

������

��	
������

��	�

���
�

��	�

�
��
��
���
�������

��
����
������
��

��������
��
���
�

��������

��� ��� ��� ��	

�������������

���������
����
����

Figure 4. Merges Considered Harmful

• “Change #include filenames from <foo.h> [sigh] to
<openssl.h>.” (552 files)

• “Change functions to ANSI C.” (491 files)

As the log messages indicate, the files contained in these
transactions have been changed because of infrastructure
changes and not because of logical relations. We refer to
such transactions as noise, as it is likely that we will get
incorrect results if we use them for any analysis.

A solution is to filter out transactions of size greater N in
the analysis. The upper bound N depends on the examined
software project.

Merge Transactions

Another more sophisticated kind of noise are merges of
branches. CVS simply reproduces all changes made to one
branch to the other—in one large transaction. One real-life
example taken from GCC is the following:

“mainline merge as of 2003-05-04” (5874 files)

Figure 4 shows a smaller example: On the branch
four transaction have been committed: {A, B}, {C, D},
{E,F}, and {G, H}. These files are now again changed
at the merge point within a transaction that contains all
changes made on the branch: {A,B,C, D, E, F,G, H}.

Merge transactions are noise for two reasons: First, they
contain unrelated changes (e.g. B and C), and second they
rank changes on branches higher (because they are dupli-
cated, e.g. A and B). Taking such transactions into account
has a significant influence on the results. Thus transactions
that resulted from merges have to be identified. Depending
on the analysis they should be ignored or at least get some
special treatment.

Unfortunately, CVS does not keep track of which revi-
sions resulted from a merge. Michael Fischer et al. pro-
posed a heuristic to detect these revisions [8]. Their ap-
proach is restricted to merges to the main branch, but it is
straightforward to apply it to other branches. Additionally,
they work only on revisions instead of analyzing complete
transactions. Analyzing transactions simplifies the detec-
tion of merges, because if a merge is detected for a single
file, the whole transaction is probably a merge. Nonethe-
less, automatic merge detection is difficult to realize, be-
cause of the large number of existing merge policies. For

5

example, as Figure 4 indicates the development can con-
tinue on both branches after a merge, creating additional
complexity for all heuristics.

6. Related Work

Data extraction from CVS is very well covered and many
tools are available for free: Daniel German and Audris
Mockus created SoftChange9—a tool that extracts and sum-
marizes information from CVS and bug tracking databases
[11]. Dirk Draheim and Lukasz Pekacki developed Bloof 10

which extracts CVS log data into a database and visualizes
the software evolution using metrics [6].

Michael Fischer et al. demonstrated how to populate
a release history database linking data from CVS and
BUGZILLA [8]. In [7] they also combined their approach
with features. Another project that considers additional data
sources is Hipikat by Davor Čubranić and Gail Murphy [5].
They link information from CVS, BUGZILLA and developer
mailing lists using text similarity.

To our knowledge, transaction recovery has been used by
many approaches but has nowhere been covered in detail:
Harald Gall, Daniel German, and Audris Mockus used fixed
time windows in the past [10, 11, 15], and we used sliding
time windows in our previous work [19, 20]. Commit mails
have not been used in recent work to restore transactions.

Up to now, only a few approaches have considered fine-
grained changes: Harald Gall et al. [10] and James Bieman
et al. [3] both analyzed relations between classes. In our
previous work we applied the approach presented in Sec-
tion 4 and mined for relations [19] and association rules [20]
between functions, sections and other fine-grained building
blocks.

Michael Fischer et al. also proposed an algorithm for de-
tecting merges of revisions in their release history database
paper [8]. Lijie Zou and Michael Godfrey showed how to
use origin analysis to detect merging and splitting of func-
tions in [21]. Nonetheless, data cleaning is often neglected
and there is still much room for improvement.

7. Conclusion

CVS archives contain lots of information—which is usually
accessible via clients. This data provides a basis for anal-
yses that mine additional knowledge. But CVS has some
weaknesses: it is slow and loses information on transac-
tions, fine-grained changes and merges. Thus, a preprocess-
ing step is required.

This paper is a first attempt to collect and formalize
preprocessing tasks that are used by analyses of version

9http://sourcechange.sourceforge.net
10http://bloof.sourceforge.net

archives. We hope that it facilitates upcoming research in
this area and provides a fruitful base for further discussions.

Acknowledgments. This project is funded by the Deutsche
Forschungsgemeinschaft, grant Ze 509/1-1. Stephan Diehl,
Richard Kuntschke, Andreas Zeller and the anonymous
MSR reviewers gave helpful comments on earlier revisions
of this paper.

References

[1] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version con-
trol system could talk. . . . In ICSE Workshop on Process Modelling
and Empirical Studies of Software Engineering, 1997.

[2] J. Bevan and J. Whitehead. Identification of software instabilities.
In WCRE 2003 [18], pages 134–143.

[3] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualization. In Proc.
11th International Workshop on Program Comprehension, pages
44–53, Portland, Oregon, May 2003.

[4] P. Cederqvist. Version Management with CVS, Dec. 2003.
www.cvshome.org/docs/manual/.

[5] D. Čubranić and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In Proc. 25th International Con-
ference on Software Engineering (ICSE), pages 408–418, Portland,
Oregon, May 2003.

[6] D. Draheim and L. Pekacki. Process-centric analytical processing
of version control data. In IWPSE 2003 [12].

[7] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug
report data for feature tracking. In WCRE 2003 [18].

[8] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Proc.
International Conference on Software Maintenance (ICSM 2003),
Amsterdam, Netherlands, Sept. 2003. IEEE.

[9] K. Fogel and M. O’Neill. cvs2cl.pl: CVS-log-message-to-
ChangeLog conversion script, Sept. 2002. http://www.red-
bean.com/cvs2cl/.

[10] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for
detecting logical couplings. In IWPSE 2003 [12], pages 13–23.

[11] D. German and A. Mockus. Automating the measurement of open
source projects. In Proceedings of ICSE ’03 Workshop on Open
Source Software Engineering, Portland, Oregon, USA, May 2003.

[12] Proc. International Workshop on Principles of Software Evolution
(IWPSE 2003), Helsinki, Finland, Sept. 2003. IEEE Press.

[13] D. Mansfield. CVSps – Patchsets for CVS, Feb. 2004.
http://www.cobite.com/cvsps/.

[14] W. Miller and E. W. Myers. A file comparison program. Software—
Practice and Experience, 15(11):1025–1040, Nov. 1985.

[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case stud-
ies of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodology,
11(3):309–346, 2002.

[16] Object Technology International. Eclipse Platform Technical
Overview, Feb. 2003. Available at www.eclipse.org.

[17] J. des Rivières. How to use the Eclipse API, May
2001. http://eclipse.org/articles/Article-API%20use/eclipse-api-
usage-rules.html.

[18] Proc. 10th Working Conference on Reverse Engineering (WCRE
2003), Victoria, British Columbia, Canada, Nov. 2003. IEEE.

[19] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies sys-
tem architecture (or not). In IWPSE 2003 [12], pages 73–83.

[20] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining ver-
sion histories to guide software changes. In Proc. 26th International
Conference on Software Engineering (ICSE), Edinburgh, Scotland,
May 2004.

[21] L. Zou and M. W. Godfrey. Detecting merging and splitting using
origin analysis. In WCRE 2003 [18].

6

The perils and pitfalls of mining SourceForge

James Howison and Kevin Crowston
Syracuse University School of Information Studies

4-206 SciTech, Syracuse, New York, USA
{jhowison, crowston}@syr.edu http://floss.syr.edu

Abstract

SourceForge provides abundant accessible data from
Open Source Software development projects, making it an
attractive data source for software engineering research.
However it is not without theoretical peril and practical pit-
falls. In this paper, we outline practical lessons gained from
our spidering, parsing and analysis of SourceForge data.

SourceForge can be practically difficult: projects are de-
funct, data from earlier systems has been dumped in and
crucial data is hosted outside SourceForge, dirtying the re-
trieved data. These practical issues play directly into anal-
ysis: decisions made in screening projects can reduce the
range of variables, skewing data and biasing correlations.

SourceForge is theoretically perilous: because it pro-
vides easily accessible data items for each project, tempt-
ing researchers to fit their theories to these limited data.
Worse, few are plausible dependent variables. Studies are
thus likely to test the same hypotheses even if they start from
different theoretical bases. To avoid these problems, analy-
ses of SourceForge projects should go beyond project level
variables and carefully consider which variables are used
for screening projects and which for testing hypotheses.

1 Introduction

We are interested in identifying factors that predict the
performance of Free, Libre and Open Source Software
(FLOSS) teams. As part of this inquiry, we chose to analyze
data from the SourceForge website, the largest repository of
FLOSS project data and, as such, an excellent source of data
on FLOSS team practices [9, 1].

While Data mining is the process both of data collection
and data analysis this paper focuses only on the challenges
faced in our first steps of data collection. Our data collection
process involved spidering numerous Web pages, parsing
the downloaded HTML files and producing summary data
for analysis. Our research encountered a number of practi-
cal pitfalls that this paper outlines. Yet the difficulties are

not merely practical—in our investigation of SourceForge
data and in other papers dealing with SourceForge data we
have encountered a number of theoretical caveats that we
present here.

1.1 Research background

Our interest in FLOSS stems from a broader interest in
distributed teams. The focus of our research is on team
practices: coordination, development of collective mind and
individual and organizational learning. Therefore we intend
to examine a number of projects in detail with both qualita-
tive content analysis and ethnographic methodology. How-
ever given the sheer number of projects and the volumes
of data available, a prerequisite to our research is to iden-
tify appropriate projects for detailed study. We are seeking
both successful and unsuccessful projects using the model
of FLOSS project success we explored in [3].

We collected data from the project demographics, devel-
oper mailing lists and the SourceForge Tracker system—
which is largely bug tracking data. With this data we con-
ducted social network analysis to identify variance in com-
munication structure (Results reported in [5]), process anal-
ysis of bug fixing (Reported in [10]) and an analysis of the
speed with which projects fix bugs (Preliminary analysis re-
ported in [4]).

2 Avoiding Pitfalls in Data collection

After receiving no response to our requests for direct ac-
cess to the SourceForge database, we concluded that the
best available method of data collection would be to spi-
der and “screen-scrape” the data. We initially spidered the
SourceForge project pages in April 2002 and used this data
to identify 140 projects that had greater than seven listed
developers and more than 100 bugs in the system. These
criteria were theoretically chosen to match our interest in
distributed teams and the bug-fixing process. We spidered
the mailing lists and bug-tracking pages in April 2003, ac-
cessing data on over 62,110 bug reports.

7

There were three stages in our data collection: Spidering,
Parsing and Summarizing 1. Each presented its own practi-
cal difficulties and necessary choices. We outline these, and
our solutions, below. We utilized Perl scripts for the data
collection—some comments are specific to Perl, most are
not. We conclude this section with testing strategies that we
recommend for mining software repositories.

2.1 Avoiding Pitfalls in Spidering

Our spidering scripts utilized the WWW::Mechanize
module available from CPAN 2. The unfortunate necessity
of spidering large datasets can place large strains on the
servers. It is therefore important to be well behaved both
during the development of your scripts and in their use.

• Code a -n (--do-nothing or ‘dry-run’) option to
test your scripts.

• Consider running a local test server that mirrors the
structure of your target site.

• Store the full HTML download rather than parsing
‘live’. This ensures that any changes to the parser (ex-
pect many!) will not require a ‘re-spidering’ of your
target site.

• It is tempting to use forked processes to speed up spi-
dering. But beware of forking too many processes and
especially of ‘lost children’ who, due to a bug, might
‘bang away’ at the server for days—long after the par-
ent process is killed.

• Code a ‘wait loop’ into the spidering code to reduce the
density of your page requests. At the time we spidered
we were never banned from the SourceForge servers,
although we have recently heard that others have been.
It is believed that this is a new defence introduced by
SourceForge, the parameters of which are unknown.
The spidering process can take a long time, extending
over a number of days. It is therefore crucial to be sure
to collect all relevant data at the time of collection.

• Whenever feasible prepare your analysis scripts and
test them on data spidered from one or two projects,
ensuring that the data being collected is sufficient. Re-
peating the spidering stage can be very time consum-
ing.

• Be sure to store the time at which the page was
downloaded. This is especially important for time-
dependent analysis that has to account for censored
data (such as Event History analysis) but equally it is

1Our analysis scripts are available on request from the first author
2the Comprehensive Perl Archive Network—a ‘class-library’ for Perl.

required to anchor the effective date of your analysis
for comparative and longitudinal analyses.

• It is useful to store the number of pages of each type
downloaded, which gives a count of the expected num-
ber of Bugs that should be found after parsing. This
count can be used as a test for the accuracy of your
parsing scripts.

Spidering is clearly an area in which cooperation be-
tween research groups could present great benefits. It is also
vital to ensure that the SourceForge site is operating prop-
erly at the time you spider—this can be checked through the
Site Status page 3.

2.2 Avoiding Pitfalls in Parsing

Large websites are generated from HTML templates and
databases, giving them a fairly consistent structure suitable
for scripted parsing to extract the required data for analysis.
Yet the level of consistency is not high enough to ensure
that unexpected problems will not be faced.

• Simplify your parsing process as much as possible by
reducing excess or non-standard HTML on the pages.
Test the results of utilizing the HTML::Tidy module
or W3Cs ‘tidy’ application which does a good job of
standardizing the HTML and removing ‘cruft’. How-
ever be sure to check that this has not altered your tar-
get data in any way and that its effects are consistent
across your downloaded dataset.

• While regular expressions are vital to this type
of parsing, we found it far simpler to uti-
lize them in combination with HTML parsing
utilities such as HTML::Parser::Simple and
HTML::TableExtractor.

Many of the inconsistencies encountered were contained
only in a limited number of projects or even only within a
few bugs or mailing lists, yet they can significantly under-
mine your confidence in the cleanliness of your data. We
found these to be important points to be aware of in the
SourceForge data:

• Line breaks in fields are especially tough to observe
in regular debugging output. Consider converting line-
breaks to visible characters to avoid confusion.

• Unexpected characters in fields, such as non-ascii
characters or HTML entities. These often show-up as
errors in external modules being utilized making the
situation difficult to debug

3 http://sourceforge.net/docman/display_doc.php?
docid=2352&group_id=1#1076697351

8

• Another very frustrating bug was caused by user-
names that look like html (Thanks, <DeXtEr>
! (gaim/482924)). Our Perl regex to parse
the fields of username and Real Name was
/(.*)\s*\((.*)\)/.

• The layout of the information on status changes in
SourceForge was inconsistent in the table at the bottom
of the bug. Three separate methods had to be used to
find the correct close_date. It appears that Source-
Forge has now changed this layout.

Many projects are inconsistent in their use of the Source-
Forge system. Be especially aware of projects that have
moved old data into the SourceForge system (e.g, tcl). The
‘official’ fields may contain misleading data (e.g., a Start
Date reflecting the day of re-entry). While the free-text
fields may contain the data from the old system in parsable
form, researchers need to decide whether to write a spe-
cial case parser for this data or to drop the project from
the analysis. Also be aware that the SourceForge Tracker
stores interaction information for each Item as ‘follow-up
messages’ in free-text fields that are of arbitrary length and
have inconsistent endings as well as containing unexpected
characters. See dynapi patch 207106 for a tricky exam-
ple. Our intention was to use XML for data storage between
scripts. Beware though: XML::Simple cannot read all
that it can write! We successfully used Storable (Perl
data-structure serialization module) to store and pass the
data between modules.

2.3 Avoiding Pitfalls in Summarizing

Summarization requirements will vary according to the
intended analyses. We pursued Social Network Analysis
(SNA), which required interaction matrices, and event his-
tory analysis, which required data on lifetimes, bug status
and assignment.

One problem in summarizing is missing data. For exam-
ple, SourceForge allows users to post anonymously, giving
such posts the username of “nobody”. Since we couldn’t
predict the effect that different treatments of the “nobody”
data would have on our analysis, we created a summarizer
that produced each of four treatments for “nobody data” 1.
Baseline case: No treatment, “nobody” appears as an in-
dividual. 2. Deletion case: All nobody data deleted. 3.
Each “nobody” as separate individual. 4. One “nobody” per
Item or thread i.e. “nobody340078” as separate individual.
We were then able to compare the effect that these different
treatments had on the outcome of our analysis (we found
surprisingly little difference between the last two strategies)
[5].

An opposite problem is that a number of the fields of
interest turn out to be multi-valued. For example, a project

can be given a development status of planning, alpha
and beta simultaneously. To retain these multiple values
would make analysis very complex. Researcher ought to
make principled decisions about how to handle such cases,
rather than letting them be made for convenience in parsing
or summarizing.

A final problem is that different analysis tools will re-
quire different data output formats. We tested over 5 dif-
ferent Social Network analysis packages before settling on
the sna module from r-project for its high degree of
scriptability, vital for large data sets. We also used the
NetMiner application for its presentable graphics capa-
bilities. Each program required output in subtly different
formats. We found that our summarization methods were
being used in a number of different scripts, making summa-
rization an excellent candidate for modularization.

2.4 Testing Strategies

On reflection, our testing strategy should have been con-
siderably more systematic. We would recommend these
techniques to those pursuing large data-collection projects
involving spidering and parsing:

• Random selection of test pages (at least three from
each project) that should be checked by hand to cre-
ate known good output.

• When making changes to the parser or summarizer,
preserve the output of earlier runs to check for unex-
pected regressions. One strategy would be to diff old
and new results, noting the items whose values have
changed and check that against the intended and antic-
ipated changes.

• Remember to note in your comments the bug reports
for which special cases of code are written (or alter-
nations in regular expressions). It is surprising how
quickly these are forgotten in the flow of bug-fixing.

• Further, it would be useful to create test cases for each
quirk identified, both to ensure the correctness of a pro-
posed solution and to prevent regressions.

• Test cases could be shared with others seeking to parse
similar data from the repository of interest (e.g., we
could have a location to share test cases for Source-
Forge, CVS, Bugzilla, Subversion, mailing lists etc.)

3 Interpretation and Analysis

There are several important issues to consider when un-
dertaking analysis and interpretation of SourceForge data.
Those seeking to utilize this data must carefully consider
their choice of screening variables and keep these separate
from their analysis variables.

9

3.1 Challenges in cleaning dirty data

Despite the template and database nature of the Source-
Forge website there is a significant amount of ‘dirty’ data
and it is hard to be sure of the extent of these problems
without time-consuming and costly manual checking.

As described above, there is a large amount of anony-
mous data in the SourceForge system that cannot be at-
tributed to any individual participant. For some analyses
this will not have an impact but it could be crucial for others.
Also described above, there is data that has been ‘dumped’
into the system, yielding valid yet totally inaccurate data.

Furthermore SourceForge has become the ‘repository
of record’ for the FLOSS community, yet for important
projects it is not the ‘repository of use’. For example vim,
an important programmers editor, is listed at SourceForge
but has only 3 developers and 0% activity and has not re-
leased any files—all clearly wrong. The page is simply a
placeholder that points to the vim ‘repository of use’. It
is likely that there are many entries like this and identifying
them is difficult, at the very least it requires the use of a data
source outside of SourceForge.

3.2 Skewed and truncated data

Firstly the projects in SourceForge are of highly different
shapes, sizes and structures, which leads to much of the data
being highly skewed. For example our screening conditions
(> 7 developers and > 100 bugs) reduced the projects of in-
terest from the 52,000 hosted by SourceForge at the time of
spidering to only 140 projects. This skew extends to project
activity and is reported in the findings of [7]. It appears that
there are a very large number of one-person projects entered
into SourceForge that never progress beyond announcement
[9].

The problems above, and their possible solutions, may
yield truncated results which complicate variance analyses,
such as regressions. When it is necessary to choose screen-
ing variables to reduce the dataset to the projects of theoreti-
cal interest, the analysis must acknowledge that the variance
in those screening variables has been significantly reduced
and attempt to compensate for this reduction (or better still
avoid the further use of the use of that variable at all).

Even avoiding the use of screening variables may not be
sufficient, because when a dataset is reduced by screening
on one variable there may be significant truncation of cor-
related variables. Even worse, it is difficult to know this
in advance without collecting all the data to look for these
correlations.

These difficulties are further compounded by the diffi-
culty in predicting the direction of the impact of the trunca-
tion. For example truncating a variable that is highly var-
ied may result in a variable that appears to be less varied,

�

�

�

��

� �

�

�

� �

�

�

�

�

2 4 6 8 10

2
4

6
8

10

var1

va
r2

� �

�

�

�

�

2 4 6 8 10

2
4

6
8

10

var1.trunc

va
r2
.tr
un
c

Figure 1. Truncating the upper range of var1
reduces the correlation from 0.91 to 0.52

increasing correlations. But truncating a variable that ex-
hibits low variance can cause the variable to increase its rel-
ative variance, leading to reduced correlations (Figure 1).
Equally a decision to truncate only sections of a variable
(either the top and bottom, or the mid-range) can have quite
unpredictable effects (in Figure 2 substantially increasing
the correlation).

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2 4 6 8 10

2
4

6
8

10

var1

va
r2

� �

�

�

�

�

2 4 6 8 10

2
4

6
8

10

var1.split

va
r2
.s
pl
it

Figure 2. Splitting the distribution increases
the correlation from 0.57 to 0.99

4 Peril in Research Design

SourceForge is a highly available dataset, but it pro-
vides only a limited number of easily available variables,
that is, variables that are pre-calculated and available from
each project’s homepage or in full lists. Examples include:
Number of developers, Project status, Activity, Downloads,
Page Views and Numbers of Tracker items. The restricted
amount of data poses problems in research design.

One problem is that there are only a limited number of
ways of mapping theoretical constructs on to these avail-
able variables. As a result, studies using SourceForge data
may end up with similar regression equations while purport-
ing to study quite divergent concepts. For example, Crow-
ston and Scozzi present an analysis of OSS communities
as virtual organizations by applying Katzy and Crowston’s
competency rallying theory to the case of OSS development

10

projects [8, 6]. The theory explains project success in terms
of the availability of competencies, the ability of developers
to recognize opportunities, the ability of project to marshall
resources and the ability to manage short-term cooperation,
but end up regressing downloads, development status and
activity against development status, number of administra-
tors, popularity of the programming language, number of
developers, lifespan, activity and factors for audience and
topic (omitting as necessary the dependent variables as in-
dependent variables). Chengalur-Smith and Sidorova start
with a population ecology perspective on projects, but pro-
pose to regress project survival against number of releases,
number of development statuses, audiences and topics, age
and number of developers [2].

A second problem is that these available variables may
have low validity as measures in any particular theory. For
example, many studies have chosen to use downloads as
their dependent variable, arguing that it is a plausible proxy
for “use”. This is problematic for two reasons. Firstly, in
the Information Systems literature “use” is already largely
a proxy for “impact” [11], so downloads becomes a proxy
for a proxy. Secondly, downloads is not even a good proxy
for use, being both inaccurate and systematically biased.
Much fundamental FLOSS software is distributed through
distributions (e.g., RedHat CDs or Debian’s apt-get sys-
tem and FreeBSD’s ports) and therefore not often down-
loaded from SourceForge (how often has a user downloaded
the vim program or the Xfree86 distribution directly
from SourceForge?). Conversely userland packages facing
frequent changes in their environment (e.g., Gaim, an in-
stant messenger package), or new packages not yet included
in a distribution, would have higher downloads. We deal
with similar difficulties with alternative dependent variable
measures and develop, hopefully, a more useful approach to
FLOSS project success in [4, 3].

5 Conclusion

SourceForge remains an excellent source of data for
those interested in studying the processes of FLOSS teams
and distributed teams in general—one of many such repos-
itories. Screen-scraping remains an unfortunate necessity
faced by researchers seeking to mine online repositories.
We have presented our experiences in mining SourceForge,
and made available our code. We have also sought to high-
light the general lessons for mining software repositories.

Regardless of data collection method those wishing to
use sourceforge data face significant challenges in cleaning,
screening and interpreting the data, we have outlined those
we have identified and the solutions we employ: researchers
should be tuned to the impact of their screening and attempt
to minimize the impact of that screening on their analyses.

Finally, as a discipline, we must be conscious of the lim-

itations of the ‘ready-made’ data-points available through
repositories such as SourceForge. Researchers must take
care in operationalizing their theoretical constructs and
should be prepared to go well beyond the “low hanging
fruit”.

Once these challenges have been faced in gathering data,
SourceForge can produce useful research results. In [5]
social network analysis showed that FLOSS projects vary
widely in their communications centralization and our cor-
relations demonstrated that larger projects decentralize into
a ‘shallot’ shaped structure. In [4] our event history analysis
of bug fixing produced an intriguing measure of team per-
formance which is sharply differentiated from other mea-
sures of project success. In [10] we mapped clear coordina-
tion practices in the bug fixing process. We are continuing
to explore this intriguing dataset.

References

[1] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the
evolution of os projects through changelog analyses. In Pro-
ceedings of the 3nd Workshop on Open Source Software En-
gineering, Int. Conf. Software Engineering, 2003.

[2] S. Chengalur-Smith and A. Sidorova. Survival of open-
source projects: A population ecology perspective. In Proc.
of 24th International Conference on Information Systems
(ICIS ’03, Seattle, WA., 2003.

[3] K. Crowston, H. Annabi, and J. Howison. Defining open
source software project success. In Proc. of International
Conference on Information Systems (ICIS), 2003.

[4] K. Crowston, H. Annabi, J. Howison, and C. Masano. To-
wards a portfolio of FLOSS project sucess measures. In
ICSE Open Source Workshop, 2004.

[5] K. Crowston and J. Howison. The social structure of open
source software development teams. In OASIS 2003 Work-
shop (IFIP 8.2 WG), 2003.

[6] K. Crowston and B. Scozzi. Open source software projects
as virtual organizations: Competency rallying for software
development. IEE Proceedings on Software, 149(1):3–17,
2002.

[7] R. A. Ghosh, G. Robles, and R. Glott. Free/libre and open
source software: Survey and study floss. Technical report,
International Institute of Infonomics,, University of Maas-
tricht: Netherlands, 2002.

[8] B. R. Katzy and K. Crowston. A process theory of compe-
tency rallying in engineering projects. In Proc. of CeTIM,
Munich: Germany, 2000.

[9] S. Krishnamurthy. Cave or community?: An empirical ex-
amination of 100 mature open source projects. First Mon-
day, 7(6), June 2002.

[10] B. Scozzi and K. Crowston. Coordination practices for bug
fixing within FLOSS development teams. In First Interna-
tional Workshop on Computer Supported Activity Coordina-
tion (CSAC 2004), Porto (Portugal), 2004.

[11] P. B. Seddon. A respecification and extension of the delone
and mclean model of is success. Information Systems Re-
search, 8(3):240–253, 1997.

11

Research Infrastructure for Empirical Science of F/OSS

Les Gasser Gabriel Ripoche Robert J. Sandusky
Graduate School of Library and Information Science

University of Illinois at Urbana-Champaign
{gasser,gripoche,sandusky}@uiuc.edu

Abstract

F/OSS research faces a new and unusual situation:
the traditional difficulties of gathering enough empirical
data have been replaced by issues of dealing with enor-
mous amounts of freely available data from many disparate
sources (forums, code, bug reports, etc.) At present no
means exist for assembling these data under common ac-
cess points and frameworks for comparative, longitudinal,
and collaborative research. Gathering and maintaining
large F/OSS data collections reliably and making them us-
able present several research challenges. For example, cur-
rent projects usually rely on “web scraping” or on direct
access to raw data from groups that generate it, and both of
these methods require unique effort for each new corpus, or
even for updating existing corpora. In this paper we identify
several common needs and critical factors in F/OSS empir-
ical research, and suggest orientations and recommenda-
tions for the design of a shared research infrastructure.

1. Introduction

A significant group of software researchers is begin-
ning to investigate large software projects empirically, using
freely available data from F/OSS projects. A body of recent
work, along with targeted assessments of researchers in the
field, point out the pressing need for community-wide data
collections and research infrastructure to expand the depth
and breadth of empirical F/OSS research, and several rough
proposals have been made [3].

This paper attempts to justify and clarify the need for
community-wide, sharable research infrastructure and col-
lections of data. We review the general case for empiri-
cal research on software repositories, articulate some spe-
cific current barriers to this empirical research approach,
and sketch several community-wide options with the po-
tential to address some of the most critical barriers. First,
we review the range of research and research questions that
could benefit from a research infrastructure and data col-

lections. Second, we expose critical requirements of such
a project. We then suggest a set of components that ad-
dress these requirements, and put forth several specific rec-
ommendations.

2. Objects of Study and Research Questions

As an organizing framework, we identify four main
objects of study—that is, things whose characteristics re-
searchers are trying to describe and explain—in F/OSS-
based empirical software research: software artifacts, soft-
ware processes, development communities, and partici-
pants’ knowledge. In Table 1 we provide a rough map of
some representative characteristics that have been investi-
gated for each of these objects of study, and show some
critical factors that researchers have begun linking to these
characteristics as explanations. It is important to point out
that these objects of study are by no means independent
from one another. They should be considered as interde-
pendent elements of F/OSS (e.g., knowledge and processes
affect artifacts, communities affect processes, etc.) Also,
each of the outcomes shown in Table 1 may play a role as a
critical factor in the other categories.

3. Current Research Approaches

We have identified two major approaches in empirical
research on the objects and factors in Table 1:

• Large-scale cross-analyses of project and artifact char-
acteristics, such as code size and code change evolu-
tion, development group size, composition and organi-
zation, or development processes [4, 5, 7].

• Smaller-scale case studies of specific practices and
processes, for concept/hypothesis development and ex-
posing mechanism details [1, 10].

These two orientations are separated less by fundamen-
tal differences in objectives than by technical limitations in

12

Objects Success Measures Critical Driving Factors
Artifacts Quality, reliability, usability, dura-

bility, fit
Size, complexity, software architecture (structure, substrates,
infrastructure)

Processes Time, cost, complexity, manageabil-
ity, predictability

Size, distribution, collaboration, knowledge/information man-
agement, artifact structure

Communities Ease of creation, sustainability,
trust, social capital

Size, economic setting, organizational architecture, behaviors,
incentive structures

Knowledge Creation, use, need, management Tools, conventions, norms, social structures, technical content

Table 1. Characteristics of empirical F/OSS studies.

existing tools and methods. For example, qualitative anal-
yses are hard to implement on a large scale, and quanti-
tative methods have to rely on uniform, easily processable
data. We believe these distinctions are becoming increas-
ingly blurred as researchers develop and use more sophisti-
cated analysis and modeling tools [9], leading to finer gra-
dations in empirical data needs.

4. Essential Characteristics

Empirical studies of software artifacts, processes, com-
munities and knowledge are constrained by several key re-
quirements. They should:

1. Reflect reality from actual experience rather than as-
sumed, artificially constructed phenomena.

2. Give adequate coverage of naturally-occurring phe-
nomena.

3. Examine representative levels of variance in key di-
mensions and phenomena.

4. Demonstrate adequate statistical significance.

5. Provide results that are comparable across projects.

6. Provide results that can be repeated, tested, evaluated,
and extended by others.

Taken together, these six requirements for software re-
search drive several requirements on the infrastructure and
data for that research. For example:

• To satisfy the needs for reality and coverage (1,2), data
should be empirical and natural, from real projects.

• For coverage of phenomena, demonstration of vari-
ance, and statistical significance (2,3,4), data should
be available in collections of sufficient size.

• To allow for comparability across projects, and to al-
low community-wide testing, evaluation, and exten-
sion of findings (5,6), data and findings should be
sharable, in common frameworks and representations.

5. Available Empirical Data

F/OSS researchers have access to very large quantities
and varieties of data, as most of the activity of F/OSS groups
is carried on through persistent electronic media whose con-
tents are open and freely available. The variety of data is
manifested in several ways.

First, data vary in content, with types such as commu-
nications (threaded discussions, chats, digests), documenta-
tion (user and developer documentation, HOWTOs, FAQs,
tutorials), and development data (source code, bug reports,
design documents).

Second, data originates from different media sources,
such as communication systems, version control systems,
issue tracking systems, and content management systems.

Third, data can be found from various locations, such
as community websites, software repositories and indexes,
and individual project sites.

Most F/OSS project data is available as byproducts of
development, maintenance, and system-use activities in
F/OSS communities. Very little data is directly available in
forms specifically intended for research use. This byprod-
uct origin has several implications for the needs expressed
above.

6. Issues with Empirical Data

Many steps often have to be performed to identify,
gather, and prepare data before it can be used for research.
Data identification and preparation are important aspects of
the research process and help guarantee that the six essen-
tial characteristics described above are met. The following
steps are common barriers that most empirical F/OSS re-
searcher will have to address:

Discovery and Selection
Because so much data is available, and because such a

diversity exists in data formats and media, finding and se-
lecting pertinent, usable data to study can be difficult. This
is a general Resource Description/Discovery (RDD) and in-
formation retrieval issue, appearing here in the context of

13

scientific data. Appropriate information organization and
metadata principles should ideally be employed in the orig-
inal sources, but this is rare in F/OSS (and other software)
data repositories, in part because of the byproduct nature of
F/OSS research data.

Access and Gathering

By access we mean the actually obtaining useful data
once it has been discovered and selected. Access difficulties
include managing administrative access to data, actually
procuring data (e.g., overcoming bandwidth constraints)
and dealing with difficulties transforming data in a useful
format (such as a repository snapshot or via web scraping).

Cleaning and Normalization

Because of the diversity of research questions, styles,
methods, and tools, and the diversity of data sources and
media available, researchers face several types of difficulty
with raw data: original data formats may not match re-
search needs; data of different types, from different sources
or projects, may not be integrable in its original forms;
and data formats or media may not match those required
by qualitative or quantitative data analysis tools. In these
cases, research data has to be normalized before it can be
used. Data normalization activities may include data format
changes, integration of representation schemas, transforma-
tions of basic measurement units, and even pre-computation
and derivation of higher-order data values from base data.
Normalization issues appear at the level of individual data
items and at the level data collections.

Linked Aggregation

Normalized data is critical for cross-source comparison
and mining over data “joins”. However, some F/OSS-based
research projects are exploring structural links and inferen-
tial relationships between data of very different characters,
such as linking social network patterns to code structure pat-
terns, or linking bug report relationships to forms of social
order [10]. Linked data aggregation demands invention of
new representational concepts specific to the kinds of data
links desired for projects, and transformations of base data
into forms compatible with those links.

Evolution

Real projects continually evolve, both in content and in
format: web sites are redesigned, tools are modified, etc.
Research projects may have to track, adapt to, and reflect
these changes. This can cause problems at many of the pre-
vious levels, as access rights can be modified, formats can
change and links can be created or removed. In addition,
trajectories of evolution themselves are actually an impor-
tant object of study for some empirical software researchers.
The central issue for this paper is how to adhere to the es-
sential characteristics given above (such as the needs for

testable, repeatable, and comparable results) while reacting
to and/or managing this evolution.

7. Addressing These Issues

The main objective of a research infrastructure is to
address community-wide resource issues in community-
specific way [13]. For F/OSS research, the objective is to
improve the collective productivity of software research by
lowering the access cost and effort for data that will address
the critical questions of software development research. In
this section we offer some possible approaches to such an
infrastructure, by first briefly describing each “component”,
and then considering its benefits and drawbacks.

Representation Standards
One of the broadest approaches to common infrastruc-

ture is the use of representation standards [13]. Such stan-
dards would move some issues of cross-source data normal-
ization forward in the process that produces F/OSS projects’
information. For example, standard internal formats for
objects such as bug reports could eliminate many internal
differences between Bugzilla, Scarab, Gnats, etc., fostering
simpler cross-analysis of data from these various reposito-
ries. Such representation standards would also facilitate ex-
change of data and/or processing tools within the F/OSS re-
search community. For example, as part of our investigation
of F/OSS bug reporting/resolution processes [9], we devel-
oped a general XML schematization of bug reports, derived
from (but more general than) the Bugzilla internal database
schema, and designed as a normalization target and transla-
tion medium for multiple types of bug reports from differ-
ent systems [8]. Issues include the difficulty of developing,
promulgating, maintaining, and enforcing such standards.

Metadata
The use of metadata permits researchers to identify rel-

evant characteristics of specific data collections. Meta-
data can serve numerous roles in the organization and ac-
cess of scientific data and documents, including roles in lo-
cation, identification, security/access control, preservation,
and collocation [12]. Standardization of metadata and ad-
dition of metadata to F/OSS information repositories, espe-
cially at the point of creation, would let the research com-
munity identify much more easily the data used in each
study, understand and compare data formats, and would also
simplify the selection process, by making visible critical se-
lection information. Fortunately, some metadata creation
can be automated; unfortunately, representation standards
are also an issue for metadata.

Tools
Tools could potentially be developed to address each of

the issues reviewed in the previous section. Some such tools

14

already partially exist in a generic form or are developed as
needed by research groups. Tools such as web-scrapers that
gather data, entity extractors that mine for specific entities
like people and dates, or cross-references that link multiple
information sources of a single project are commonly devel-
oped from scratch in each research effort. These tools are
part of the basic toolbox of almost every empirical F/OSS
researcher and could easily be provided as such. In fact,
several nascent efforts are already underway to produce
such tools (e.g. [6]).

Another contribution of a research infrastructure could
be to place research data access and manipulation tools up-
stream, directly within software development tools used by
the F/OSS community (e.g., CVS, Subversion, Bugzilla),
instead of requiring sometimes-tedious and potentially risky
post processing. For example, in most cases, F/OSS tools
rely on databases for data storage and manipulation. These
databases contain valuable information that is often lost dur-
ing the translation to a web-visible front-end. (Usually the
front-ends rely on web interfaces that display information in
a user-friendly fashion but drop important structure in the
process). Access to the underlying database can be much
more valuable (and in many cases easier) than the current
techniques of web-scraping that must recreate such missing
relations post-hoc, and may not be successful.

Centralized Data Repositories (CDRs)

Gathering specific snapshots of raw data and making
them available to the research community from a controlled
“cleanroom” location could provide benchmark data for
comparative analyses and measurement of progress—a type
of infrastructure that has proven invaluable in other disci-
plines. It would ensure that data parameters stay constant
across studies, and through evolutionary stages of projects.
Moreover, it might be easier in many cases to get a snap-
shot from such a repository than to go through all the steps
of collecting the data directly from an F/OSS community.
The CDR approach can have advantages of control, orga-
nization, and data persistence. However, this approach also
raises the issues of data selection and maintenance. As with
any managed information collection, CDRs would need
selection policies to detail which materials from projects,
tools and communities would be chosen for inclusion, and
why [2]. The F/OSS community is already too large to
attempt building practical evolving archives of all F/OSS
projects (if such a notion were even meaningful). Selection
necessarily induces bias, but careful selection would foster
research on a shared body of data, possibly leading to more
reliable findings. Second, preservation policies need devel-
opment as F/OSS data is evolving quickly and collections
will have to be maintained.

Federated Access
Federating access is another approach to facilitating in-

formation sharing without making many redundant copies
of original data, while maintaining local control over data
access and organization. A central federation repository
collects only metadata, and uses it to provide common-
framework access to a variety of underlying sources. Fed-
eration has the advantages of distributed sharing, such as
trading off lightweight central representations and sophisti-
cated search infrastructure, against local data maintenance,
information preservation, and access control.

Processed Research Collections
Putting all the previous components together would lead

to a set of normalized, processed and integrated collections
of F/OSS data made available to the research community
through either federated or centralized mechanisms.

Integrated Data-to-Literature Environments
Finally, an advanced contemporary approach would be

an attempt to connect both data sources and research liter-
ature in a seamless and interlocking web, so that research
findings can be traced back to sources, and so that basic
source data can be linked directly to inferences made from
it. Such arrangements provide powerful intrinsic means of
discovering connections among research themes and ideas,
as they are linked through both citation, through common
or related uses of underlying data, and through associa-
tions among concepts. Similar efforts are underway in many
other sciences (e.g. [11, 13]). Networks of literature and
data created in this way, with automated support, can reduce
cognitive complexity, establish collocation of concepts and
findings, and establish/maintain social organization within
and across F/OSS projects.

8. Recommendations

In accord with the rationales outlined above and the
strong sense of the F/OSS community [3], we recommend
that F/OSS researchers begin collective efforts to create
sharable infrastructure for collaborative empirical research.
This infrastructure should be assembled incrementally, with
activity in many of the areas defined below:

Refine Knowledge
This paper has provided a sketch of some ideas toward

robust and useful research infrastructure. The ideas and mo-
tivations here need more development, and collaborative ef-
forts are encouraged.

Exploit Experience
Many standards for sharable scientific data exist for other

communities, as do many repositories of data conforming
to those standards. We should do further research on what

15

other communities have done to organize research data. For
example, many collections of social science data are main-
tained around the world1. We should use the experiences
of these projects as a basis for the F/OSS research infras-
tructure. The success of these archives in the social science
community is also a partial answer to questions of “why
bother?”

Instrument Existing Tools
We should work with existing F/OSS community de-

velopment tool projects to design plugins for instru-
menting widely used F/OSS tools (such as Bugzilla,
CVS/Subversion, etc.) to make the content of those tools
available via APIs in standardized formats, administratively
controllable by original tool/data owners. Such an effort
could also benefit the community of F/OSS developers it-
self; this sort of instrumentation could help interfacing mul-
tiple tools, projects, and communities, and might increase
willingness to participate.

Develop Data Standards
Standards for metadata and representation will help glue

together data and tools such as finding aids and normaliza-
tion tools. In collaboration with F/OSS tool developers, we
should work toward standardizing formats and content of
repositories of many kinds.

Create Federation Middleware
Federated approaches to data archives will have much

lower initial costs and will foster community building while
maintaining local control over base data and sharing. Foun-
dations for such middleware exists (e.g. in Digital Library
frameworks such as Fedora).

Develop Consensus on Data Selection Policies
We need much more consensus on what kinds of data

provide the most utility for the widest variety of empirical
F/OSS research projects. Developing this consensus will
also help to congeal the community of empirical software
researchers.

Create Prototypes
As a proof of concept, we should mock up a complete

F/OSS research infrastructure model embodying as many
of the desired characteristics as feasible. Such a partial im-
plementation might use, for example, a complete cross sec-
tion of sharable information from a single project, including
chat, news, CVS, bug reporting, and so on. We have already
instigated some local efforts in a few of these areas, such
as generalized bug report schemas, semi-automated extrac-
tion of social processes, preliminary data taxonomies, auto-
mated analysis tools, and others have also begun efforts in
these directions [4, 6, 8, 9].

1See for example http://www.iue.it/LIB/EResources/
E-data/online_archive.shtml for a list of such collections.

In the end, efforts in these directions will pay off in the
form of deeper collaborations in the empirical software re-
search community, wider awareness of important research
issues and means of addressing them, and ultimately in
more systematic, grounded knowledge and theory-driven
practice in software development.

References

[1] M. S. Elliott and W. Scacchi. Free software development:
Cooperation and conflict in a virtual organizational culture.
In S. Koch, editor, Free/Open Source Software Development.
Idea Publishing, 2004.

[2] G. E. Evans. Developing library and information center col-
lections. Libraries Unlimited, Englewood, CO, 4th edition,
2000.

[3] L. Gasser and W. Scacchi. Continuous design of free/open
source software: Workshop report and research agenda,
October 2003. http://www.isrl.uiuc.edu/
˜gasser/papers/CD-OSS-prelim-report.pdf.

[4] D. German and A. Mockus. Automating the measurement
of open source projects. In Proceedings of the 3rd Workshop
on OSS Engineering, Portland, OR, May 2003.

[5] S. Koch and G. Schneider. Results from software en-
gineering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, H.R.
Hansen und W.H. Janko (Hrsg.), Nr. 22, Wirtschaftsuniver-
sität Wien, 2000.

[6] Libre Software Engineering tool repository.
http://barba.dat.escet.urjc.es/index.
php?menu=Tools.

[7] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodol-
ogy, 11(3):1–38, July 2002.

[8] G. Ripoche and L. Gasser. Possible bugzilla modification
to create a Web-API for direct XML serialization of bug re-
ports. SQA Project Memo UIUC-2003-20, 2003.

[9] G. Ripoche and L. Gasser. Scalable automatic extraction
of process models for understanding F/OSS bug repair. In
Proceedings of the International Conference on Software &
Systems Engineering and their Applications (ICSSEA’03),
Paris, France, December 2003.

[10] R. J. Sandusky, L. Gasser, and G. Ripoche. Bug report net-
works: Varieties, strategies, and impacts in an OSS devel-
opment community. In Proceedings of the ICSE/MSR Work-
shop, Edinburgh, Scotland, UK, 25 May 2004.

[11] L. Shoman, E. Grossman, K. Powell, C. Jamison, and
B. Schatz. The Worm Community System, release 2.0
(WCSr2). Methods in Cell Biology, 48:607–625, 1995.

[12] T. R. Smith. The meta-information environment of digital
libraries. D-Lib Magazine, July/August 1996.

[13] S. L. Star and K. Ruhleder. Steps toward an ecology of in-
frastructure: Design and access for large information spaces.
Information Systems Research, 7(1):111–134, 1996.

16

Mining CVS repositories, the softChange experience

Daniel M. German
Software Engineering Group

Department of Computer Science
University of Victoria
dmgerman@uvic.ca

Abstract

CVS logs are a rich source of software trails (informa-
tion left behind by the contributors to the development pro-
cess, usually in the forms of logs). This paper describes
how softChange extracts these trails, and enhances them.
This paper also addresses some challenges that CVS fact
extraction poses to researchers.

1. Introduction

We have defined software trails as information left be-
hind by the contributors to the development process, such
as mailing lists, Web sites, version control logs, software
releases, documentation, and the source code [5]. Software
trails maintain a history of the development that can be used
to recover the evolution of the project, to help management
understand how it evolves and how its contributors work
and interact, and to assist its contributors in their daily tasks.

In particular, software configuration management soft-
ware, and more specifically version control software, keeps
the complete history of any file in the project, including
who modified what, when, and the delta of the modifica-
tion. CVS, the Concurrent Versions System, is arguably
the most widely used version control management system
available in the market and has become a de-facto standard
in the development of open source projects. softChange
is a tool for the extraction, enhancement and visualization
of software trails, primarily from CVS. The architecture of
softChange is depicted in figure 1. The trails extractor is
responsible for retrieving the raw software trails from the
different sources. A SQL relational database management
system is the core of softChange. A fact enhancer anal-
yses the database in order to generate new facts. Finally,
the visualizer is responsible for showing the trails to the
user. softChange has been successfully used to recover
the history of the software project Evolution (a mail client
for Unix similar to Microsoft Outlook). The results are re-

ported in [5]. softChange was used to extract Evolution’s
software trails, enhance them, and then query and visualize
them. softChange helped us to understand how the project
evolved, and how its developers collaborated. Another re-
search project in which softChange was used is described
in [4]. In this case we were interested in understanding the
way that the software developers of the GNOME project
(a large, open source project) collaborated. The analysis
of these software trails allowed the discovery of interesting
facts about the history of the project: its growth, the interac-
tion between its contributors, the frequency and size of the
contributions, and the important milestones in its develop-
ment.

cvs
repository

Web Client
with SVG support

Trails
Extractor

softChange
repository

mail
archives

bugzilla
repository

Visualizer

PostScript

softChange
 Architecture

Fact Enhancer

Figure 1. The architecture of softChange

This paper describes how softChange extracts soft-
ware trails from CVS, and the methods used to create new

17

facts. Section 2 describes related work, section 3 explains
softChange’s fact extraction in detail, with examples of
how it was used to extract the CVS software trails from four
major projects. Section 4 describes current challenges in
trail extraction from CVS. We finish with our conclusions
and future work.

2. Related Work

The two most commonly used hypertext frontends to
CVS are Bonsai [7] and lrx [6]. They operate by retrieving
the revision information of each file, which is then stored
in a relational database. Xia is a plugin for Eclipse for the
visualization of CVS repositories[10] based on the Shrimp
visualization tool [9]. Xia does not extract the CVS trails,
instead it relies on the Eclipse’s API to CVS, which makes
it extremely slow in large projects. Liu and Stroulia have
developed JReflex, a plug-in for Eclipse for instructors of
software engineering courses [8]. It is designed to compare
the differences in development styles in different teams,
who does what, who works on what part of the project, etc.
JReflex is intended to be a management oriented tool for
browsing the CVS historical data. It uses the history log
in CVS and the output of CVS log and stores the informa-
tion in a relational database. Fisher and Gall have described
a CVS fact extractor in [1], where they described the main
challenges of creating a database of CVS historical data and
then use it to visualize the interrelationships between files in
a project [2]. In [3] CVS logs are used to expose relation-
ships between classes and files that might not be found by
other methods, such as call graphs.

3. Mining a CVS repository

3.1. Retrieving file revisions

Projects mining CVS historical data have relied on pro-
cessing the output of its commands (e.g. cvs log), or the
log files in the repository (CVSROOT/history). Unfor-
tunately, the format of the output of CVS commands and
its log files is not fully documented. In order to under-
stand these formats, the first phase of the development of
softChange used a “clean room” method. Our goal was to
recover all the revisions to all the files in the repository. We
followed the following procedure:

1. We selected one project as a test case (Evolution), and
detailed the requirements for the extractor.

2. We were divided into two independent teams.

3. Each team reversed engineered the CVS formats and
proceeded to create the extractor.

4. The extractors were run on the Evolution CVS reposi-
tory, and their outputs compared.

5. When there were differences in the outputs both teams
discussed the problem and determined which team’s
extractor was faulty (in some case, both were). Teams
exchanged information about the formats but there was
never exchange of code between teams.

6. We repeated this process until the extractors generated
the same output.

7. The code from one team was dropped, and the other
became the core of softChange.

8. We then proceeded to create a set of test-cases for fu-
ture regression testing.

We have used softChange to extract the file revisions
from several projects. Table 1 shows the main statistics of
four selected projects. A snapshot of their CVS repositories
was made on Feb 17, 20041. Mozilla 2 corresponds to the
cross-platform Web browser, Evolution is a email client for
Unix similar to Outlook, PostgreSQL is a SQL database
management system; GNU gcc is the multi platform, multi
language compiler.

Table 1. CVS statistics from selected projects

Project Authors. Files Revisions
Mozilla 672 81,520 709,234
Evolution 245 5,402 92,688
PostgreSQL 24 3,789 74,541
GNU gcc 214 24,463 60,311

3.2. Rebuilding modification requests

CVS mining projects usually work at the file revision
level. Files, however, are not usually modified alone. A
developer will modify all the files necessary to complete a
given task, and then commit them together (using the cvs
commit command). Knowing which files are modified at
the same time is important because it means that these files
are somehow related (the change in one file is related to the
change in the other file).

1You can find a copy of the cvs log command for each of the reviewed
projects in http://view.cs.uvic.ca/softChange/mining2004/

2The Mozilla CVS repository keeps track of the email address of
the developer in its cvs id. A typical Mozilla cvs id has the form
userid%domainname. An inspection of the different cvs ids suggests
that the same developer has used different cvs ids, as her corresponding
email address changes. For example these are three different cvs ids that
seem to correspond to the same person: alecf, alecf%flett.org,
alecf%netscape.com. There are 505 unique cvs ids when the do-
main name suffix has been stripped.

18

Unfortunately CVS does not keep track of which files
are committed at the same time. By analyzing the files’ re-
visions softChange tries to recover, for each cvs commit,
the files that its invocation modified. We denote a modifica-
tion request (MR) as the set of files committed simultane-
ously by a developer in a “cvs commit” command.

To our knowledge, softChange is the only tool that at-
tempts to recover modification requests. It uses a heuristic
that is based on a sliding window algorithm. This algo-
rithm takes 2 parameters as input: the maximum length of
time that an MR can last δmax, and the maximum distance
in time between two file revisions τmax. This algorithm is
depicted in figure 2. Briefly, a file revision is included in a
given MR if a) all the file revisions in the MR and the candi-
date file revision were created by the same author and have
the same log message (a comment added by the developer
during the commit); b) the candidate file revision is at most
τmaxseconds apart from at least one file revision in the MR;
and c) the addition of the candidate file revision to the MR
keeps the MR at most δmaxseconds long.

// front(List) removes the front of the list
// top(List) and last(List)
// query the corresponding elements of the list
// Initialize set of all MRs to empty
MRS = ∅
for each A in Authors do

List = Revisions by A ordered by date
do

MR.list = {front(List)}
MR.sT ime = time(MR.list1)
while first(List).time− MR.sT ime ≤ δmax∧

first(List).time−
last(MR.list).time ≤ τmax∧

first(List).log = last(MR.list).log∧
first(List).f ile /∈ MR.list do
queue(MR.list, front(List))

od
MRS = MRS

⋃
{MR}

until List �= ∅
od

Figure 2. Algorithm to recover MRs

Most MRs take few seconds to complete. But some tend
to be rather long. There are several factors that affect the
length of a MR. First, the size and number of files that com-
pose the MR; second, the bandwidth available between the
developer’s computer and the CVS server (a slow link will
slow down the time required to do the commit); and third,
the load of the CVS server. In our experiments we have
found that τmax = 45s and δmax = 600s are good val-
ues for these parameters (these values were used to extract
the MRs discussed in this paper). Smaller values for these

parameters tend to split MRs, and larger numbers tend to
combine two MRs into one).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

Number of files in MR (log scale)

Mozilla
Evolution

Postgresql
gcc

Figure 3. Number of files in an MRs

Most MRs contain very few files. Figure 3 shows the dis-
tribution of the number of files in a MR (normalized to val-
ues from 0 to 1). The plot only shows MRs with 25 or less
files), but there are larger MRs (for example, in Evolution
we detected an MR which included 650 files, and in Mozilla
one that included 5838 files). Note that the four projects
have only 2, almost identical curves. This effect was inter-
esting enough to further explore. We discovered that the use
of ChangeLog files (files that document the changes made
to the software) accounted for this sharp difference. Evo-
lution and GNU gcc use ChangeLogs, and almost every
MR that includes two or more files includes a change to a
ChangeLog file. Mozilla and PostgreSQL do not use them.
When ChangeLogs are not taken into account all the curves
look remarkably similar. Further research is needed to ver-
ify if this is a coincidence or, indeed, this is a normal pattern
in software development. Figure 4 shows the distribution of
MRs during 2003 for the chosen projects.

3.3. Other software trails

softChange is able to retrieve and use other trails:

• ChangeLog files. If the project uses ChangeLogs,
for every MR softChange extracts the delta of the
corresponding ChangeLog file and associates it with
it. ChangeLogs were originally defined by the Free
Software Foundation, and they are commonly found
in open source projects, and their objective is to ex-
plain how earlier versions of software are different
from the current version. Figure 5 shows an excerpt
of a ChangeLog. The format of a ChangeLog delta
is very simple: the first line contains the date and au-
thor, followed by a sequence of changes (all indented).

19

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12

N
um

be
r

of
 M

R
s

Month (2003)

Mozilla
Evolution

Postgresql
gcc

Figure 4. MRs per month, 2003

ChangeLogs are usually created by hand, although
there are some utilities that help the developer in their
creation. We plan to compare the information found
in MRs with the one recorded in ChangeLogs in or-
der to verify, both, the MR extraction algorithms and
the quality of the ChangeLogs. Some projects use the
ChangeLog delta as the corresponding CVS log mes-
sage for a given MR.

• Bugzilla: It is customary for developers to record the
Bugzilla bug number in the corresponding CVS log
message of the MR that fixes it. Because this is a free-
form, textual field, there is no standard on how this
information should be recorded. Figure 6 shows sev-
eral cvs log comments that correspond to bug fixes.
Based on our observations, the following regular ex-
pression matches the most commonly forms in which
a bug number is reported (\s corresponds to any white
space character):

(\#[0-9][0-9]+|bugs?\s+\#?[0-9][0-9]+)(,\s+\#[0-9][0-9]+)*

Unfortunately this is an error prone approach and the
bug numbers identified need to be correlated to the
Bugzilla database, in order to find out if the time that
the MR was committed is consistent with a change in
the bug report (softChange does not currently support
this verification).

• Mailing lists. Mailing lists are an important source of
information about the evolution of the project. We cur-
rently correlate MRs to mail messages by using the
author and the date attributes of both the MR and the
message. One of the problems we have encounter min-
ing email messages is that a person tends to have mul-
tiple email address, which might not be the same as the
ones recorded in the ChangeLogs.

2003-01-27 Ettore Perazzoli <ettore@ximian.com>

* tools/evolution-addressbook-export.c: #include bonobo-activation
instead of oaf.
(main): Initialize using gnome_program_init().
(save_cards): Use g_main_loop_quit() instead of gtk_exit().

* tools/evolution-addressbook-import.c: Update include list for
GNOME 2.
(main): Initialize using gnome_program_init().
(unref_executable): Use g_main_loop_quit() instead of gtk_exit().
(add_cb): Likewise.

Figure 5. Excerpt from a ChangeLog

...
* mail-display.c (mail_display_render): Set default text color
as black in body when doing printing preview. Fixs bug #48290.

...
Bugzilla bug #218: define HAVE_STRERROR only if it is not yet defined.
Thanks to David Nebinger (dnebinger@synertech.highmark.com) for reporting
the problem and suggesting the fix.

Figure 6. Excerpts from cvs log comments
referring to bug reports.

4. The challenges of mining CVS repositories

One of the consequences of a growing number of
projects extracting different software trails is the explosion
of terms to describe them. For example, [1] refers to a CVS
revision as a cvsitem, and its log as description. As the field
of mining software repositories matures, we expect that the
nomenclature becomes more consistent.

CVS commands are able to access a CVS repository in
two different forms: across the network (when the CVS
server is located on a different computer), or in the local file
system (when the CVS repository is located on the same
computer as the working copy of the repository). Mining
the repository might result in numerous requests and a large
amount of resulting data. For example, softChange can
regenerate every revision of a file. In a project such as
Mozilla, this will require requesting more than 0.7 million
different files (one for each filename, revision pair). If the
repository is located in a different computer, this process
will most certainly stressed it, and it will consume a large
chunk of its bandwidth. This problem will be aggravated if
several researchers start using Mozilla as a test case. This
problem can be avoided by having a local snapshot of the
project’s CVS repository. Having a local copy of the reposi-
tory will guarantee that the resources of the software project
are not over-used.

The creation of a common set of test cases is also needed.
Different research groups analyzing different software trails
have chosen different applications for their analysis. This
makes it difficult to compare approaches. We propose the
selection of a small set of application that could be used for
this purpose. The applications should satisfy the following
requirements:

• These applications should be a mixture of old and new,

20

applications, large, medium sized and maybe small
ones. Some should include a GUI, while some should
not have any. Some might be dead projects.

• Ideally, the original logs and historical data should be
made available to the researchers. For instance, the re-
searchers should have a copy of the CVS repository, a
dump of the Bugzilla data, a copy of the raw mailing
lists archives, etc. This is important because it avoids
potential problems created by extracting the data from
views of it (such as scrapping bugzilla data from its
Web front-end) and it also avoids the extra load on
the project servers due to the requests made by the re-
search project.

• It is necessary to agree on the period of observation of
the project. Most likely, the chosen projects are alive,
and keep changing. Hence it is necessary to specify
the start and end date for the observation of a given
project.

• Projects with open source licenses are desirable. It is
important that the project being analyzed does not put
any restrictions on the researcher (like not being able
to publish benchmarks of the application). An open
source license guarantees no discrimination against us-
ing the software. It also provides access to the source
code, and equally important, to its software trails. It is
undeniable that close-source applications are worth ex-
ploring, but they cannot be used as test-cases because
they might not be available to any researcher that wants
to look at them.

Some projects have become typical test cases in the lit-
erature. Mozilla, for example, is one of them. But one has
to understand the characteristics of a project before using it
as a test case, in order to interpret its data correctly. The
Mozilla project started using CVS when the source code of
Netscape became Mozilla, and therefore, not all its history
is recorded. Another peculiar feature of Mozilla is that sev-
eral developers have more than one CVS id (we have found
developers with two or three cvs ids). Nonetheless, it is a
very valuable test case, as it provides the researcher with a
large, mature and widely used project that keeps evolving
and it is maintained by a large number of individuals.

One important issue that has not been clearly addressed
yet is the ethical one. Would the developers of an open
source project consider their software trails open too? What
are the implications of publishing aggregated data about a
project? For example, would it be ethical to claim (in a re-
search paper for example) that code from certain developer
tends to have more defects than any other developer’s code
in the same project? Should projects and their developers
be anonymized? The answers to these questions could be
the subject of an entire paper.

5. Conclusions and Future Work

CVS is widely used in software projects, some of which
are several years old. The information available in its logs
can be very valuable for its developers, their management
and researchers as it provides a fine-grained view of how
the software project is evolving. Unfortunately the amount
of data can be overwhelming. Work is needed in several
directions: models to describe this data, and query and vi-
sualization tools to inspect it. softChange is still under
development, but we welcome people interested on using it.

Acknowledgments

This research was supported by NSERC Canada, and the
Advanced Systems Institute of British Columbia. The au-
thor would like to thank A. Mockus (original co-author of
softChange) and the anonymous reviewers of this paper.

References

[1] M. Fischer, M. Pinzger, and H. Gall. Populating a Release
History Database from Version Control and Bug Tracking
Systems. In Proceedings of the International Conference on
Software Maintenance, pages 23–32. IEEE Computer Soci-
ety Press, September 2003.

[2] M. Fisher and H. Gall. MDS-Views: Visualizing problem
report data of large scale software using multidimensional
scaling. In Proceedings of the International Workshop on
Evolution of Large-scale Industrial Software Applications
(ELISA), September 2003.

[3] H. Gall, M. Jazayeri, and J. Krajewski. CVS Release His-
tory Data for Detecting Logical Couplings. In Proc. of the
International Workshop on Principles of Software Evolution
(IWPSE), pages 12–23. IEEE Press, November 2003.

[4] D. M. German. Decentralized open source global software
development, the GNOME experience. Journal of Software
Process: Improvement and Practice, accepted for publica-
tion.

[5] D. M. German. Using software trails to rebuild the evo-
lution of software. Journal of Software Maintenance and
Evolution: Research and Practice, to appear, 2004.

[6] A. G. Gleditsch and P. K. Gjermshus. lrx Cross-Referencing
Linux. http://lxr.sourceforge.net/, Visited Feb. 2004.

[7] T. Hernandez. The Bonsai Project. http://www.mozilla.org/
projects/bonsai, Visited Feb. 2004.

[8] Y. Liu and E. Stroulia. Reverse Engineering the Process
of Small Novice Software Teams. In Proc. 10th Working
Conference on Reverse Engineering, pages 102–112. IEEE
Press, November 2003.

[9] M.-A. D. Storey, C. Best, and J. Michaud. SHriMP Views:
An Interactive and Customizable Environment for Software
Exploration. In Proc. of International Workshop on Program
Comprehension, May 2001.

[10] X. Wu. Visualization of version control information. Mas-
ter’s thesis, University of Victoria, 2003.

21

Text is Software Too

Alexander Dekhtyar
Dept. Computer Science
University of Kentucky
dekhtyar@cs.uky.edu

Jane Huffman Hayes
Dept. Computer Science
University of Kentucky
hayes@cs.uky.edu

Tim Menzies
Dept. Computer Science,
Portland State University,

tim@menzies.us

Abstract

Software compiles and therefore is characterized by a
parseable grammar. Natural language text rarely conforms
to prescriptive grammars and therefore is much harder to
parse. Mining parseable structures is easier than mining
less structured entities. Therefore, most work on mining
repositories focuses on software, not natural language text.
Here, we report experiments with mining natural language
text (requirements documents) suggesting that: (a) mining
natural language is not too difficult, so (b) software repos-
itories should routinely be augmented with all the natural
language text used to develop that software.

1 Introduction

“I have seen the future of software engineering, and it
is......Text?”

Much of the work done in the past has focused on the
mining of software repositories that contain structured, eas-
ily parseable artifacts. Even when non-structured artifacts
existed (or portions of structured artifacts that were non-
structured), researchers ignored them. These items tended
to be ”exclusions from consideration” in research papers.

We argue that these non-structured artifacts are rich
in semantic information that cannot be extracted from
the nice-to-parse syntactic structures such as source code.
Much useful information can be obtained by treating text
as software, or at least, as part of the software repository,
and by developing techniques for its efficient mining.

To date, we have found that information retrieval (IR)
methods can be used to support the processing of textual
software artifacts. Specifically, these methods can be used
to facilitate the tracing of software artifacts to each other
(such as tracing design elements to requirements). We have
found that we can generate candidate links in an automated
fashion faster than humans; we can retrieve more true links
than humans; and we can allow the analyst to participate
in the process in a limited way and realize vast results im-
provements [10,11].

In this paper, we discuss:

• The kinds of text seen in software;

• Problems with using non-textual methods;

• The importance of early life cycle artifacts;

• The mining of software repositories with an emphasis
on natural language text; and

• Results from work that we have performed thus far on
mining of textual artifacts.

2 Text in Software Engineering

Textual artifacts associated with software can roughly
be partitioned into two large categories:

1. Text produced during the initial development and then
maintained, such as requirements, design specifica-
tions, user manuals and comments in the code;

2. Text produced after the software is fielded, such as
problem reports, reviews, messages posted to on-line
software user group forums, modification requests, etc.

Both categories of artifacts can help us analyze software
itself, although different approaches may be employed. In
this paper, we discuss how lifecycle development documents
can be used to mine traceability information for Indepen-
dent Validation & Verification (IV&V) analysts and how
artifacts (e.g., textual interface requirements) can be used
to study and predict software faults.

3 If not text..

One way to assess our proposal would be to assess what
can be learned from alternative representations. In the soft-
ware verification world, reasoning about two represenations
are common: formal models and static code measures.

A formal model has two parts: a system model and a
properties model. The system model describes how the pro-
gram can change the values of variables while the properties
model describes global invariants that must be maintained
when the system executes. Often, a temporal logic1 is used

1Temporal logic is classical logic augmented with some tem-
poral operators such as �X (always X is true); ♦X (eventually
X is true); ©X (X is true at the next time point); X

⋃
Y (X is

true until Y is true).

22

to express the properties model. Modern model checkers
such as SPIN [15] search the systems model for a method
of proving the negation of the properties model. The cost
of formal modeling includes the writing cost, the running
cost, and the rewriting costs. The writing cost has two com-
ponents. Firstly, there is a short supply of analysts skilled
in creating temporal logic models. Secondly, even when an-
alysts with the right skills are available, the writing process
is time-consuming.

Another significant cost of formal modeling is the run-
ning cost of model checking. A rigorous analysis of formal
properties implies a full-scale search through the systems
model. This space can be too large to explore, even on to-
day’s fast machines. Much of the research into formal mod-
eling focuses on how to reduce this running cost of model
checking. Various techniques have been explored but none
are panaceas. For example, optimisations based on clus-
tering (e.g. [3]) generally fail for tightly connected models.
Consequently, in the general case, classic formal methods
do not reduce the effort of testing a system. However, for
the kernel of mission-critical or safety-critical systems, the
large cost of formal methods is often justified.

At the other end of the spectrum from model-rich formal
modeling are defect measures based on syntactic static code
measures such as the Halstead [7] or Mccabe [18] metrics.
Such static code measures are a weak primary method of
finding errors. Such metrics are collected on a module-by-
module basis. Hence, they know neither: (a)how often that
module will be called, nor (b)the severity of the problem
resulting from the module failing, nor (c)the connections
from this module to other modules.

However, static code measures are adequate secondary
detectors that can audit the results of primary methods.
Elsewhere, we have shown that such detectors are stable
across multiple projects and can be selected such that they
have a very low probability of false alarms [19].

Nevertheless, the current situation is as follows. Com-
plex comprehension methods such as formal modeling can
be too complex for many applications. Simpler methods
such as static code measures may only be suitable for aug-
menting other methods. In neither case do we possess meth-
ods that are both very insightful and widely applicable. We
are hence motivated to work on other methods.

This understanding has been demonstrated by several
other researchers including Di Lucca, Di Penta and Gradara
[5], who have examined the problem of classifying, via a va-
riety of different algorithms, textual maintenance requests
into eight categories. Their best result, using support vec-
tor machines (SVM) [16], was 84% accuracy. Lee and
Bryant [17] examined the problem of formalizing natural
language requirements specifications unsing Natural Lan-
guage Processing (NLP) techniques. Thus, we observe that
in recent years, information retrieval and text mining meth-
ods are starting to be applied to adress Software Engineer-
ing problems.

4 Possibility

So, what can we do if we add text to software reposi-
tories? Here, we discuss two different problems that can
be addressed in such a manner: fault analysis and require-
ments tracing.

4.1 Fault Analysis

Barry Boehm’s seminal work in software engineering eco-
nomics convinced us that faults found early in the lifecycle
are less expensive and time consuming to correct [2]. We
have worked as practitioners and researchers in the area of
verification and validation for over twenty years, and we
have seen this confirmed many times. In fact, we are con-
vinced that faults found early in the lifecycle can serve as
predictors of faults that will be found later in the lifecycle.
We further believe that textual analysis can assist. For ex-
ample, an unsatisfied high level requirement (one that does
not have design elements to satisfy it) may lead to a missing
capability in the as-built software product.

Evidence of such fault links (the relationship of one fault
to another) was presented by Hayes and Offutt [9, 12, 13].
Specifically, high-level interface requirements (textual) were
examined using a technique called input validation analysis.
Faults in the interface requirements were identified as well
as potential faults (ambiguities, for example). Test cases
were generated on the basis of these early life cycle faults.
The test cases were then executed on the as-built software
and 13% of these revealed later life cycle faults in the deliv-
ered product. Hayes postulated that these early life cycle
faults were late life cycle predictors for two reasons: devel-
opers tend to make the same kinds of mistakes, regardless
of the life cycle phase; and faults do not get repaired early
in the life cycle and are detected later (latent defects) [9].

Knowing that faults caught early in the life cycle are
easier and less costly to repair AND can assist us in pre-
dicting and discovering later life cycle faults is a call to
action. We should fully explore techniques that allow us to
analyze early lifecycle artifacts for such faults. We should
not be dissuaded from our duty by the existence of textual
narrative in these early artifacts.

4.2 Requirements Tracing

Requirements tracing, a bane of Independent Verifica-
tion & Validation (IV& V) analysts, is a prolonged, tedious,
but incredibly important task of making sure that all initial
software requirements have been adequately reflected in the
design specifications for the software, and, eventually, in the
code. Traditional approaches to requirements tracing ivolve
repeatedly going through hardcopies of requirements doc-
uments, building and manually maintaining spreadsheets,
or, at best, using requirements management tools that al-
low manual assignment of keywords to requirements and
use simple keyword matching algorithms to find candiate
links. Such procedures reflect the nature of the task: re-
quirements documents are written in natural, if somewhat

23

more bureaucratically formal, language. So far, human cog-
nitive powers are unmatched in detecting correspondence
between two (or more) text fragments: requirements and
design elements, for example.

The only reason why, up to this day, such procedures are
still employed is the relatively small size of the documents
under consideration for the requirements tracing task. Even
then, large projects have thousands of requirements and,
potentially, tens of thousands of design elements: approach-
ing the limits of what IV& V analysts are prepared to suffer
through without extra help.

At the same time, in the core of the requirements trac-
ing task, lies a problem well-known to computer scientists
and, in fact, well-studied by them: given a document col-
lection, and a document (query) find all such documents in
the collection that are similar (relevant) to it. This problem,
addressed by decades of intensive research in Information
Retrieval (IR), is becoming ubiquitous, at the very least
for those of us who use Internet on a daily basis. And our
ability to search for, and find, information in the pits of the
World Wide Web only attests to the success of Information
Retrieval in dealing with this problem.

Thus, we have reached the conclusion that by taking the
low level requirements (design elements) to be the docu-
ment collection, and by treating high level requirements as
queries, we can use the vast array of IR algorithms (see [1]
for the starting point) to produce lists of candidate links
for the requirements traceability matrix. Our preliminary
experiments, reported in [10,11] showed that:

• automated means of generating candidate links work
much faster than humans (even when humans are as-
sisted by existing requirements management software);

• automated means of generating candidate links
retrieve more true links than the human ana-
lyst/requirements management software combination;

• automated means of generating cadidate links tend
to report more false positives than human ana-
lyst/requirements management software combination;

• analyst participation in the process, as the validator
of the candidate links, is still important.

Following this work, we have implemented additional IR
algorithms, and incorporated user feedback analysis into
the system, making the requirements tracing process in-
teractive again and giving human analysts the last word
in determination of the links. At the same time, feedback
analysis has shown the ability to improve significantly both
the recall (percentage of true links found) and precision (the
measure of the signal-to-noise ratio in the list of candidate
links), especially when combined with techniques for filter-
ing outputs produced by our IR methods [11]. This lead to
creation of RETRO (REquirements Tracing On-target), a
standalone, IR-based requirements tracing tool for IV& V
analysts [11].

In Table 1, we briefly summarize RETRO’s achievements
to date. The two main metrics of success of an IR task that
are applicable to the requirements tracing problem itself are

Method Precision Recall
STP 38.80% 63.41%
Analyst+STP 46.15% 43.9%
TF-IDF 11.3% 57.3%
TF-IDF+ Feedback 18.6% 76.2%
TF-IDF+ Feedback+Filter 60.9% 59.5%
TF-IDF+ Thesaurus 12.2% 64.2%
TF-IDF+ Thesaurus + Feedback 18.1%% 83.3%
TF-IDF+ Thesaurus + Feedback + Filter 39.5% 80.9%

73.8% 73.8%
LSI (10 dim, 0.32 coverage) 5% 90.4%
LSI (10 dim, 0.32 coverage)+ Thesaurus 5% 92.85%
LSI (40 dim, 0.92 coverage) 5% 80.95%
LSI (40 dim, 0.92 coverage)+ Thesaurus 5% 85.71%

Table 1. Using information retrieval to trace
requirements.

recall, the percentage of all true links retrieved, and preci-
sion, the percentage of true links in the answer set. Recall
measures coverage, while precision measures signal-to-noise
ratio. The top two rows in Table 1 show the precision and
recall obtained from a commercial requirements manage-
ment tool, SuperTracePlus (STP) [8,20], and from a senior
analyst working with the output of the SuperTracePlus on
a simple test set consisting of 19 high-level and 49 low-
level requirements. The remaining rows show how different
methods that we have implemented in RETRO fare on the
same test. TF-IDF is a standard [1] IR method that com-
putes similarity between documents as the cosine of the
angle between their vector representations. This method
has been enhanced with user feedback [1], various filtering
techniques [11], and a simple thesaurus [11]. LSI stands for
“Latent Semantic Indexing”, a dimension reduction tech-
nique that proved to work very well on small document
collections [4].

In each row we report the best, in our opinion, combi-
nation of recall and precision that was obtained during the
experiments (for TF-IDF+Thesaurus+Feedback+Filter we
report two different results achieved). As can seen from the
table, most of the methods tested within RETRO consis-
tently outperform humans and STP in recall. At the same
time, these methods trail in precision, a feat that can be cor-
rected by the use of filtering techniques at the price of some
decrease in recall. In general, our findings today show that
there is significant potential in the use of well-established
IR methods for analyzing textual artifacts.

5 But What’s the Price?

All things considered, textual artifacts are less well-
understood than code. It stands to reason that the analysis
of such artifacts must be conducted with more complicated
algorithms, than the analysis, even mining, of code alone.
At the same time, we should also be prepared for the taste
of failure: not all methods of text analysis will work in our
settings. Our experience with the use of IR algorithms for
requirements tracing lead us to discover the following spe-
cific features of mining software-related text:

24

� �
� �
� �
� �

� �
� �
� �
� �

1940s − machine language

1950s − assembly language

1960s−70s − high−level
language

1980s − object−oriented language

1990 − formal specification language

2xxx? − natural language

2000s − model−based development

Figure 1. The Artifact Pendulum Swings from Structure to Less Structure.

• domain size: traditional IR algorithms represent doc-
uments as vectors of keyword weights. Such method-
ology works very well when the document collection is
large enough to approximate the real use of different
terms in English. Thus, the methods of determining
the importance of a keyword for a document that work
extremely well when there are billions of documents in
the collection, at times, have strange effects when the
number of documents is in tens or hundreds.

• document size: traditional IR algorithms assume that
the individual documents contain significant text.
Most of traditional test collections for IR algorithms
[14] use documents that have on average more than
one hundred words. At the same time, it is not un-
usual for a requirement to consist of one or two simple
sentences. That is to say, the fewer the words in the
document, the fewer keywords detected.

• incomplete vocabulary: requirements documents are,
very often, written in a very specific lingo. Combined
with the relatively small number of requirements, it
makes the vocabularly of the entire collection, both
high- and low- level requirements, incomplete, and
sometimes, different from the traditional English usage
vocabularly (in terms of frequency of use of words).
Thus, some words, that are treated as almost stop-
words2 elsewhere, may suddenly give the appearance
of very important keywords, only because they are
used in only one or two requirements.

• recall vs. precision: typically, both recall and precision
are equally important. However, their roles are dras-
tically different in requirements tracing tasks. Recall
appears to us as more important as, at the end of the
day all matching requirement pairs must be found.
Precision plays a role of a “filter”: it determines how
many false positives will be examined by the human

2Stopwords are words that are not considered to be keywords:
articles, prepositions, pronouns, modal verbs, and some common
verbs and nouns (such as “be”, “get”, “thing”, “stuff”). In addi-
tion, special collections of documents may have extra stopwords,
e.g., “software” is a stopword in a collection of Software Engi-
neering papers.

analyst. Very low precision, makes automated candi-
date link generation useless, however, while our goal is
always 100% recall, precision of even 40%–50% is ex-
cellent (analyst has to examine about one false positive
per true link) as it drastically reduces human effort as
compared to the manual process.

All of this leads to the observation that while we should
attempt to take as much advantage of already designed in-
formation retrieval, text mining and/or natural language
processing methods, we should also be ready to: (a) ac-
cept unapplicability of some of them to specific problems,
and (b) not only adopt but adapt them to the needs and
features of these problems.

6 Conclusion

One could argue that the software engineering artifact
pendulum has been swinging from more formal, structured
and parseable means of describing software to more text-
based ever since the inception of the discipline. As can be
seen in Figure 1, the beginning of it all was the pleasant-
to-parse machine language (top left). Wise pioneers of our
field realized that the price was too high for the poor human
programmers, and came up with assembly language. . . and
the pendulum came into motion. High-level procedural lan-
guages that came next attempted to record the algorithm
rather than its direct execution by the computer. Assem-
bly command abbreviations were replaced with keywords,
control structures and identifiers of (practically) arbitrary
length. Then, in the 1980s, we decided that an even higher
level of abstraction was needed: the ability for developers
to think of things in terms of objects.

All this high level thinking, however, had not been lead-
ing to drastically better software. In fact, requirements
were just as poorly specified by software engineers using
UML and use cases and other ”texty” artifacts that came
along with object oriented techniques.

The next step (the pendulum starts going up) lead to
formal specification languages. The potential of these lan-
guages cannot be denied. The ability to parse such ar-
tifacts and even use specification provers to ensure that

25

source code implements a formal specification is powerful
indeed. Formal methods promise automatic verification and
automatic generation of demonstrably correct code. How-
ever, the experience with such tools to date is not positive.
Ph.D.-level mathematical skills may be required to spec-
ify the knowledge required for such tools [21]. Commercial
practitioners may lack either the required training or the
required time needed for such specification.

So the pendulum continues to rise. Other researchers
have argued for lightweight modeling languages with formal
semantics (e.g. [6]). Here, we propose something different.
After decades of research, we have evidence that mere text
can be more useful than previously believed. Our recom-
mendation is that when repositories are built, we should
always include all available text artifacts.

Text mining from software engineering text is a high
risk, high return adventure. The translation steps from
high level artifacts, such as concept documents and high
level requirements statements, to low level implementation,
such as source code, inject a tremendous amount of vari-
ance into the final artifacts. At the same time, it is precisely
this variance that hurts software development process, es-
pecially the validation and verification part of it. Thus, we
maintain that achieving a better understanding of how text
turns into code will lead to improved software.

Acknowledgements

This research was conducted at West Virginia Univer-
sity, Portland State University, and the University of Ken-
tucky under NASA contracts NCC2-0979, NCC5-685, and
NAG5-11732. The work was partially sponsored by the
NASA Office of Safety and Mission Assurance under the
Software Assurance Research Program led by the NASA
IV&V Facility. Reference herein to any specific commer-
cial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply
its endorsement by the United States Government.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press, Addison-Wesley, 1999.

[2] B. Boehm. Software Engineering Economics. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[3] P. Clark and T. Ng. The cn2 induction algorithm.
Machine Learning, 3:261–283, 1989.

[4] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent se-
mantic analysis. Journal of the Society for Information
Science, 41(6):391–407, 1990.

[5] G. Di Lucca, M. Di Penta, and S. Gradara. An ap-
proach to classify software maintenance requests. In
Proc., International Conference on Software Mainte-
nance (ICSM), 2002.

[6] S. Easterbrook, R. R. Lutz, R. Covington, J. Kelly,
Y. Ampo, and D. Hamilton. Experiences using
lightweight formal methods for requirements modeling.

IEEE Transactions on Software Engineering, pages 4–
14, 1998.

[7] M. Halstead. Elements of Software Science. Elsevier,
1977.

[8] J. Hayes. Risk reduction through requirements trac-
ing. In The Conference Proceedings of Software Quality
Week, 1990.

[9] J. H. Hayes. Input validation testing: A system level,
early lifecycle technique. In ICSE ‘97 Doctoral Con-
sortium, published in the Proceedings of the Seven-
teenth International Conference on Software Engineer-
ing Doctoral Consortium, May 1997.

[10] J. H. Hayes, A. Dekhtyar, and J. Osbourne. Improving
requirements tracing via information retrieval. In In-
ternational Conference on Requirements Engineering,
Monterey, California, pages 151–161, 2003.

[11] J. H. Hayes, A. Dekhtyar, S. Sundaram, and
S. Howard. Helping analysts trace requirements: An
objective look. In International Conference on Re-
quirements Engineering (RE’2004), 2004.

[12] J. H. Hayes and J. Offutt. Input validation testing: A
requirements-driven, system level, early lifecycle tech-
nique. In Proceedings of the 11th International Con-
ference on Software Engineering and its Applications,
October 1998.

[13] J. H. Hayes and J. Offutt. Increased software reliabil-
ity through input validation analysis and testing. In
Proceedings of The Tenth IEEE International Sympo-
sium on Software Reliability Engineering, pages 199–
209, 1999.

[14] W. Hersh and P. Over. The trec-9 interactive track
report. In Proc. Text Retrieval Conference (TREC-9),
pages 41–50, 2000.

[15] G. Holzmann. The model checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279–295, May
1997.

[16] T. Joachims. Text categorization with suport vector
machines: Learning with many relevant features. In
Proc. ECML, pages 137–142, 1998.

[17] B. Lee and B. Bryant. Contextual knowledge repre-
sentation for requirements documents in natural lan-
guage. In Proceedings of FLAIRS, the 15th Interna-
tional Florida Artificial Intelligence Research Sympo-
sium, 2002.

[18] T. McCabe. A complexity measure. IEEE Trans-
actions on Software Engineering, 2(4):308–320, Dec.
1976.

[19] T. Menzies, J. S. D. Stefano, C. Cunanan, and R. M.
Chapman. Mining repositories to assist in project
planning and resource allocation. In International
Workshop on Mining Software Repositories (submit-
ted), 2004. Available from http://menzies.us/pdf/

04msrdefects.pdf.
[20] T. Mundie and F. Hallsworth. Requirements analy-

sis using supertrace pc. In Proc. American Society of
Mechanical Engineers (ASME) for Computers in Engi-
neering Symposium at the Energy and Environmental
Expo, 1995.

[21] D. R. Smith. KIDS: A semiautomatic program devel-
opment system. IEEE Transactions on Software En-
gineering, 16(9):1024–1043, 1990.

26

 Integration and Presentation

GlueTheos: Automating the Retrieval and Analysis of Data from Publicly
Available Software Repositories

Gregorio Robles
Universidad Rey Juan Carlos

grex@gsyc.escet.urjc.es

Jesus M. González-Barahona
Universidad Rey Juan Carlos

jgb@gsyc.escet.urjc.es

Rishab A. Ghosh
MERIT - Univ. Maastricht
rishab@merit.unimaas.nl

Abstract

For efficient, large scale data mining of publicly avail-
able information about libre (free, open source) software
projects, automating the retrieval and analysis processes is
a must. A system implementing such automation must have
into account the many kinds of repositories with interesting
information (each with its own structure and access meth-
ods), and the many kinds of analysis which can be applied to
the retrieved data. In addition, such a system should be ca-
pable of interfacing and reusing as much existing software
for both retrieving and analyzing data as possible.

As a proof of concept of how that system could be, we
started sometime ago to implement the GlueTheos system,
featuring a modular,flexible architecture which has been
already used in several of our studies of libre software
projects. In this paper we show its structure, how it can
be used, and how it can be extended.

Keywords: Mining source code repositories, propos-
als for exchange formats, meta-models, and infrastructure
tools, integration of mined data with other project data

1 Introduction

Libre software projects1 range from very small ones
(with just one developer commited to his own toy) to large-
scale global projects whith thousands of collaborating de-
velopers [9]. Specially, most of the larger projects follow a
way of organization that has been called the ‘bazaar’-style
development [14], open to everybody willing to participate.
Thus, all elements taking part in the software development

1In an attempt to avoid any confusion regarding the meaning of free
in free software, throughout this article, the term libre software is used
instead. It was chosen because of its meaning pointing towards liberation,
and not of merely being costless. The term Open Source is refused for its
ignorance about the philosophical foundations of what free software meant
in the first place. “Libre software” is a term which is more and more usual
in some communities, among them many European and Latin American
countries.

process are as much open as possible, in the sense that the
generated information is publicly available so that it is eas-
ier for ’newcomers’ to become integrated in the project.
Fortunately, this strategy offers to researchers the chance
to access large amounts of data about the development pro-
cess, the participants and, of course, the output product: the
software.

Previous studies have taken advantage of this situation,
and several research groups have focused their attention
on the libre software phenomenon in the last years. For
instance, [6] offers a software evolution analysis of the
Linux kernel versions -without doubt the most known li-
bre software project- following the classical software evo-
lution point of view [11]. Others have paid attention to
economic parameters [10] and have investigated how well
classical software cost prediction models (as among others
COCOMO [1]) can be applied. In [13] it is shown how libre
software projects are composed usually of 10 to 15 core de-
velopers who lead the software process, a group of around
one order of magnitude larger that participate in minor de-
velopment tasks (bug fixes, etc.) and a final group around
another order of magnitude that helps by other means (bug
reports, etc.). In any case, the availability of data has proven
to be very positive for research in the libre software environ-
ment.

But the amount of data and information available for in-
spection is that big that these analysis are often regarded as
being too superficial. An example where this is common
case are source code repositories. In such systems, not only
the last state of the code is available for download but also
all previous states. The amount of information that is ready
for being extracted and analyzed is enormous and two fac-
tors become key points: automation and data mining.

When analyzing the data available in publicly accessi-
ble repositories, the automation of the data retrieval and the
quantitative analysis is of great importance[15][3]. In the
case of libre (free, open source) software projects, repos-
itories are managed with very similar software (if not the

28

same)2, and similar access protocols, so automation allows
for the access to most of the available projects. Some
methodologies have already being described which make
strong use of some kind of automated tools to perform this
tasks [3, 4, 7, 17, 10, 15] but they usually make use of ad-
hoc tools, without proposing a general architecture flexible
enough to make several kinds of distinct analysis on differ-
ent kinds of software repositories.

That is precisely what we have addressed with
GlueTheos: to design a system with an architecture which
allows in a way as general and flexible as possible the data
retrieval and analysis of public software development data
repositories. Currently it can access CVS repositories and
archives of source packages (both in deb and rpm formats),
but others (such as bug tracking systems and mailing lists)
are being included soon in the system. It is designed in a
highly modularized way, so that adding new retrieval meth-
ods (from CVS or other data repositories) and analysis pro-
cedures is simple.

2 The GlueTheos system

The structure of the GlueTheos system is simple.
Around a core of coordination scripts, there are input mod-
ules which download raw data (currently source code) from
the repositories where it resides, modules which analyze
such code from several points of view (counting lines of
code or identifying authorship information), modules which
store the information obtained in the previous phase (as a
set of XML files or in an SQL database, for instance) and
modules which produce the final reports (tables with data,
graphs, etc.)

In the rest of this section, all those modules will be dis-
cussed in more detail:

• Core scripts. These scripts are the usual interface for
users. With the help of a configuration file, they decide
which repository is to be used, and which download-
ing, analyzing, storage and reporting modules will be
run for it, according to the characteristics of the repos-
itory, the kind of intermediate storage desired and the
final reports wanted. The configuration file can also be
used to determine, for instance, that periodic snapshots
from a CVS are to be retrieved, to study the evolution
of a project. Or to perform only some stages of the
whole process (like, for instance, downloading, ana-
lyzing and storing results, skipping the reporting phase
which could be done later).

• Downloading modules. For each kind of repository,
a downloading module is available. Currently, there

2The 12 biggest projects in size in Debian 3.0 use a software reposi-
tory, all of them CVS besides Linux which uses BitKeeper, a proprietary
solution

are three: one for accessing CVS repositories, another
for storages of RPM source packages (and in particu-
lar, those found in Red Hat Linux distributions), and
yet another for Debian repositories (with source pack-
ages in the deb format). Those modules are capable of
downloading the source code, unpackaging it if neces-
sary (for instance, in the case of source packages), and
having it ready for the next stage (which usually is the
analysis of the code).

Figure 1. The Gluetheos modules

• Analyzing modules. For this stage, mostly external
tools are used, like SLOCCount [17, 16], CODD [2],
tools for metrics estimation (which include algorithms
to calculate Halstead’s[8] and McCabe’s[12] complex-
ity measures), raw count of file sizes (using for in-
stance the wc utility), and others. Therefore, these
modules are mainly drivers for those tools. Usually,
they run the specific external program they drive, and
produce results in a given data directory, in the output
format used by that program.

• Storage modules. For making it simple the genera-
tion of reports, the information has to be in an easy
to query storage. In addition, exchange formats have
to be defined when information is to be moved or dis-
seminated for study by other groups or at other loca-
tions. Currently, for most analyzing modules we have
two storage modules, one generating XML files and
other using SQL commands to feed a database. The
first one is mainly intended for data interchange, while
the other is better used for querying in the final stage.
Now, we are moving to an architecture where there are
only SQL modules for each analyzing module, and an

29

SQL to XML translator (also dependent on the analyz-
ing module used, but much more simple).

• Reporting modules. These modules are the produc-
ers of the outputs of the system. They usually query
the database, and massage the obtained information to
produce tables, statistical analysis or graphs. For do-
ing their work, in many cases those modules use also
external tools, such as Ploticus or Gnuplot for gener-
ating graphs, or R for statistical analysis. There are
also reporting modules which generate information in
a format suitable for being browsed via web, with the
help of some PHP code (LAMP = Linux + Apache +
MySQL + PHP).

Currently, GlueTheos is written in Python, using Python
standard libraries to access SQL databases, to generate
XML files or to interface with other tools.

3 Some examples of use

The GlueTheos system has been used in the two follow-
ing cases (which may serve as examples illustrating its ca-
pabilities):

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

5
10
20
35
55
85

130
200
305
465
705

1070
1625
2465
3735

Figure 2. Histogram with the SLOC distribu-
tion for packages in Debian 2.0

• The study of the packages in the Debian
GNU/Linux[7] and Red Hat Linux[17], distri-
butions (Figure 1 and Figure 2). For this study,
GlueTheos downloaded several Debian and Red Hat
distributions, and analyzed the resulting source code
by using SLOCCount to count its lines in several
ways, like SLOC (source lines of code) per package
or SLOC per programming language.

• The construction of the website http://libresoft.
dat.escet.urjc.es. This site includes information
and results about several libre software projects, from

several points of view gained with the aforementioned
analysis and measurement tools GlueTheos makes use
of. Most of the information available publicly there
has been built with the help of GlueTheos. One of the
goals of this website is to offer the libre (free, open
source) community the possibility to obtain feedback
from our research.

C

C++

Shell

Perl
other

Figure 3. . Pie graph with the SLOC count for
main languages in Red Hat 8.0 distribution

GlueTheos also provides an excellent opportunity for
economists to measure the demonetized, previously invis-
ible productivity of open source software projects, and also
to analyze the organization and production methods of soft-
ware at a level of detail probably unmatched by any other
field of economic activity. This is because almost ev-
ery single act of production, direct or indirect, is docu-
mented and recorded somewhere in the open source devel-
opment process, much of which is captured and quantified
by GlueTheos, which already pays attention to economic
measures (such as the Gini[5] coefficient of concentration).

Although this sort of measurement may not, initially, be
in monetary terms, it does represent human time and effort
spent on productive activity, and can be "remonetized" at
least for the purposes of measurement. One use for this may
be to improve models for cost estimation of software devel-
opment, by correlating time spent as reported by individual
developers in surveys, with their productivity as determined
through the examination of source code and related meta-
data (such as CVS).

4 Conclusions and further work

The GlueTheos system is an attempt to build a set of
tools capable of automating most of the tasks related to the

30

analysis of publicly available information about libre soft-
ware projects. Currently, it can access CVS repositories
and archives of some GNU/Linux distributions. By using
external tools it can make several different analysis on the
fetched data, and produce several kinds of reports (from ta-
bles with organized data to graphs or information suitable
for being offered in a website. GlueTheos pretends to fill
the gap that exists for in-depth, fully-automated analysis.

Our group is working currently in stabilizing the sys-
tem, making it more versatile (including more downloading,
analyzing and reporting modules), and exploring data for-
mats for the exchange of information about libre software
projects. We are planning also to put a big effort in the re-
porting modules, so that information from different sources
can be integrated and correlated giving a wider picture than
the one that a unique tool may offer. Special attention is be-
ing given in showing the huge amount of data in a way that
it is comprehensible avoiding the problem of information
overload that is common in these scenarios.

Future plans also include to set up an interactive website
where libre software developers can request their projects to
be analyzed. Developers would have only to fill out a form
where the location of the publicly available data sources
should be specified and the system will automatically re-
trieve and analyze them, putting up a web-sites with the re-
sults and finally notifying the developers that they can see
results there.

All the GlueTheos system, and the external tools it uses,
are libre (free, open source) software.

References

[1] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[2] Codd website.
http://codd.berlios.de/.

[3] D. Germán and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, Portland, Oregon, 2003.

[4] R. A. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and prelimi-
nary analysis. In Open Source Workshop, Toulouse, France,
June 2002.

[5] C. Gini. On the Measure of Concentration with Espacial
Reference to Income and Wealth. Cowles Commission,
1936.

[6] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. Oct. 2000.

[7] J. M. González-Barahona, M. A. Ortuño Pérez, P. de las
Heras Quirós, J. Centeno González, and V. Matellán Oliv-
era. Counting potatoes: The size of Debian 2.2. Upgrade
Magazine, II(6):60–66, Dec. 2001.
http://people.debian.org/~jgb/debian-counting/
counting-potatoes/.

[8] M. H. Halstead. Elements of Software Science. Elsevier,
New York, USA, 1977.

[9] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[10] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[11] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics and
laws of software evolution - the nineties view. 1997.

[12] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 1976.

[13] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[14] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[15] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[16] Sloccount.
http://www.dwheeler.com/sloccount/.

[17] D. A. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size, June 2001.
http://www.dwheeler.com/sloc/redhat71-v1/
redhat71sloc.html.

31

Using CVS Historical Information to Understand How Students Develop Software

Ying Liu, Eleni Stroulia, Kenny Wong

University of Alberta

Edmonton, Alberta, Canada

{yingl, stroulia, kenw}@cs.ualberta.ca

Daniel German

University of Victoria

Victoria, BC, Canada

dmg@cs.uvic.ca

Abstract

Software engineering courses are expected to teach
students a wide range of knowledge and skills, e.g.
software-development methodologies, tools, work habits,
collaboration skills, a good sense of scheduling, etc. In
this paper, we present a method to track the progress of
students developing a term project, using the historical
information stored in their CVS repository. This
information is analyzed and presented to the instructor
in a variety of forms. The goal of this analysis is, first,
to understand how students interact, and second, to find
out if there is any correlation between their grades and
the nature of their collaboration. Understanding these
factors will enable instructors to detect potential
problems early in the course of the students’ projects, so
they can concentrate their help on those teams who need
it the most.

1. Introduction

During an undergraduate software-engineering education,
students are expected to become knowledgeable in
advanced software-development methods, acquire good
time-management habits, and learn effective collaboration
skills. In this paper, we discuss a set of analyses that
support the monitoring of student teams and their
progress, based on information collected from their CVS
[5] project repositories. These analyses infer a multi-
perspective trail of the project development, and a set of
corresponding visualizations presents various statistics,
diagrams, and reports on this trail. Based on the
information produced, instructors can track the evolution
of a team's work against other teams or compare the
performance of members within a team. Furthermore,
instructors can inspect the revisions to an individual file
or the modification requests of the project. (A
modification request or MR is a set of revisions that is
considered atomic and results from a C V S commit
command [1]). We believe that if this information is
suitably presented and highlighted, it could also be useful
to students to self-evaluate their own progress.

This paper begins with a description of the directly
collected and derived data examined by our method.
Section 3 discusses our case study and highlights some
initial experimental results. Section 4 outlines the related

work. Section 5 concludes the paper and discusses some
future work.

2. Collected data

Useful data is captured in the CVS logs. Examining the
information implicit within them about development
processes and software trails is crucial for monitoring and
managing a software project.

2.1 Directly collected data

A substantial amount of information can be extracted by
examining the data directly collected by the CVS
repository. Trends in this data can be inferred and
presented through diagrams or reports, leading to
meaningful insights regarding the development of the
team projects.

2.1.1 The team level

With the same project requirements, comparisons across
teams are very useful for instructors to monitor the
performance of the whole class, and quickly notice
unusual trends and events that might signify problems.
For each team, we record the following parameters: total
number of files, total number of Java files, total number
of MRs, total number of revisions, average CVS
operation distribution by type [2] and date, average work
days, average work days on Java files, the proportion of
MR size, and so on. Diagrams based on these parameters
are introduced in the next section.

2.1.2 The individual-developer level

Within a particular team, we need to look into each
member's contribution, and suggest adjustments if
necessary. We also ask each student to complete a
questionnaire to describe their own contributions and
what they perceive as the contributions of their team
members. For each member, the following parameters are
gathered: number of total CVS operations (of each type),
number of modified files, number of modified Java files,
number of added files, number of added Java files, and
number of Java files last modified, total number of added
and deleted lines of code (LOC), total number of work
days, total number of work days on Java files, the first
checkout date, the first file add date, the first file
modification date, the last file modification date, the last
operation date, self and peer assessment questionnaire
data, and scores achieved on the project stages. Using this
data, instructors and team members can become aware of

32

the work habits of individual students, their workload,
and any problems that need to be addressed.

2.1.3 The file level

The above parameters enable the comparative analysis of
individual students’ work. To discover potential problems
with the project design and the task division, more data
about the project files themselves is relevant. For
example, two potential problems may be files that have a
high occurrence of colliding changes, or files that end up
being modified by multiple members. For each file, the
following parameters are gathered: final size, log size,
number of revisions, number of individuals who modified
it, total numbers of operations of each type, and added
and deleted LOC of each member.

2.2 Derived data

In addition to the information captured in the CVS
history, there still exist underlying relationships between
the team members’ work habits, their roles, their main
tasks, the project-design structure, and project schedule
which are implicit in this data. Examples of further
analyses that could shed some light on the above
relationships are the following: the proportion of each
student's idle days to project duration, the proportion of a
student’s leading idle days (between the start of the
project and the student's first CVS operation) to the entire
project duration, the proportion of the tailing idle days
(between the student's last CVS operation and the end of
the project) to the entire project duration, the proportion
of Java files to the whole project, and the proportion of
various types of CVS operations on Java files to all CVS
operations.

3. The case study

To evaluate the usefulness of the information discussed
above as a means of monitoring project progress, we
conducted a case study, in the context of a third-year
software engineering course, in which students work on a
project in teams of four. This work was originally done in
the context of our JRefleX project [3,4]
(http://www.cs.ualberta.ca/~stroulia/JRefleX). Here, we

further analyze the collected data to include information
collected at the MR level [1] and compare the inferences
of our analyses against the students’ own understanding
of their project work.

In the context of this course, students coordinate their
software changes using CVS. The project is common
across all teams, with three delivery dates spanning a two-
month development period. Although various deliverables
are required, including unit test cases, UML diagrams,
and a user manual, we initially focus our analysis on
changes to the source code over time. Detailed
information can be seen in [2].

This section introduces selected charts and statistics
generated in our case study on five student teams (labeled
A to E). Diagrams can be presented at various levels: by
course, by team, by individual, or by file. Such diagrams

intuitively show trends, enabling the users to gain a high-
level impression of team and individual performance. One
aim is to notice anomalies, such as delayed or unbalanced
workloads. Statistical reports list the data gathered in our
database for more detailed inspection.

3.1 MRs and CVS operations for all teams

Figure 1 shows the number of MRs over time. Figure 2
compares the average number of CVS operations by type
across teams. A comparison of team operation numbers
across time can also be generated, although not shown
here for the sake of space.

The aim of these diagrams is to compare the various
work habits of the student groups. How fast do they start?
How long is their actual development process? How many
idle days do they have? How many files do they work on
at a time? What proportion of files are Java? What is the
distribution of their CVS operations? Considering these
diagrams, we observe that group D has the most CVS
operations (such as file additions and modifications), has
more regular workload habits than the other teams, and
has a medium number of MRs. Groups B, C, and E have
sharp peaks around each delivery deadline, preceded by
long idle periods. Group B has the most MRs at the
second deadline. Group C has the smallest number of
MRs.

3.2 CVS operations and file-related
information for individuals

For a specific team, three kinds of diagrams and two
kinds of reports can be generated. One diagram (see
Figure 3) compares across team members the number of
CVS operations over time. A second diagram compares
across team members the numbers of CVS operations of
each type (see Figure 4 for group D). A third diagram
displays, for all the files by a given team, the proportion
of added and deleted lines of code by the team members
(see Figure 5). The daily report lists all the history logs
in the CVS repository by date chronologically, while the
individual report shows all CVS operations by each
member chronologically.

The purpose of these diagrams and reports is to
compare workloads and work habits of individuals within
a team. For example, we want to discover who
contributes what in which role, such as whether there are
students who write stubs to be filled in by others. Are
certain members focused on testing and debugging? Or,
are all members assigned a full variety of development
tasks?

3.3 CVS operations and modifications at the
file and revision level

Two file-level diagrams (one shown in Figure 5) and one
file-level report are intended to display the information
related to all the files being worked on by a team. Users
can notice the high collision files and files modified by
multiple members quickly in the diagrams. The file-level
report lists the detailed history of CVS operations on a

33

file in time order. Many questions are relevant at this
level. What are the number and types of files that a team
has? How many files are there? What is the proportion of
heavily modified files? How many times is a file
modified or touched? Who is the author of a file? Is the

author the last person to modify a given file? How does
the number of files evolve over time? What is the
distribution of CVS operations on each file? Which files
belong to the core of the software? Which files should be
in an independent module?

Figure 1: Modification requests of the teams

Figure 2: Numbers of operations of all types for the teams

Figure 3: Total numbers of operations of Group D members over time

34

Figure 4: Numbers of operations of all types of Group D members

Figure 5: The files of Group E and their revisions

From such diagrams (some omitted here for brevity),
we notice that the four members in Groups D and E
exhibit different work habits. Group D members started
earlier and have a larger proportion of working days. In
contrast, all the members in Group E only start work just
before the deadlines, with long silent periods according to
their CVS repository. Furthermore, Group E had very few
revisions per file, suggesting that they may have done
most of their work at the very last moment. Student 2
dominated the CVS activity in Group D, with the CVS
operations distributed to almost every day of the whole
project except the initial planning time. He created many
Java files for later completion, and he completed some of
them without involving any other members. Although
Group D has better habits, their project has an abnormally
high number of Java files, with only very few of them
being modified. After inspecting the file report, two
reasons were found: all the members moved their
individual assignment work into the common project

directory, and Student 2 dumped another 37 Java files of
his own into a directory named "demo/newLayout" on
Feb. 22, and never touched them any more.

For group E, although Student 2 started much later,
he still ended up adding and changing the most Java files,
and took over some Java files from his teammates, being
the last to check in most files. Student 3 is an early bird
with the least total CVS operations, and the smallest
number of Java files related to him, but his work is
independent. Student 4 always works hard just before the
deadlines, with most of his operations in adding new,
complete files. However, his proportion of Java files is
very small. These symptoms of poor habits can be
correlated to a poor software design as well.

3.4 The students’ view

At each deadline, we required each student to submit a
self and peer-evaluation for his teammates. Looking at

35

their responses, we found substantial evidence in support
of some of our conjectures in this study.

All four members of Group D had good feelings
about their progress. Here are some examples of student
comments: “because of my group members work ethics in
being determined to start early, work regularly, and
keeping each other updated on one another's progress”,
“communication was open and constant via ICQ and
email”, “each member was more than willing, if not
enthusiastic, to contribute and participate”, “I was very
impressed with other members’ willingness to help other
members with problems in their ‘assigned’ areas”. In
addition, we got some explicit validation for Student 2’s
outstanding performance: Student 1 assessed him as
“Student 2 did a lot of work with the coding (especially
the interface design)”, and Student 4 gave such an
evaluation: “very impressed with the effort that Student 2
and Student 1 put into the GUI”.

Group E also had their own collaboration feedback:
most members felt “ok” at beginning although their team
had some member changes. However, in their project part
2 report, a lot of problems appeared: “some confusion as
to who was doing what. Some parts were done out of
order so we couldn't do our part until all this other stuff
was built”, “some miscommunication of what the plan
was”, “concentrated largely on the front-end and the back-
end was poorly formed and probably will have to be
redone for the next part of the project”. Student 1
complained about the uneven workloads, and in part 3, he
said that some teammates “reverted to the old ways of the
computer geek” implying a substantial last minute effort.
Finally, Student 4 expressed his feeling that “it is better
to underestimate yourself than to overestimate”. Changes
in the team members was one of the reasons for Student
2’s late start; in the end, he had a lot of Java file
operations because he “played a key role in trying to
integrate the front-end and backend as well as integrating
other classes”.

From the above students’ comments, we can infer
that the analyses we discussed here are both valid and
potentially effective in noticing problems in a timely
way. With the associated simple and easy-to-read
visualizations, we are confident that we can help
instructors and students to understand their development
process better and detect symptoms earlier.

4. Related work

Various CVS repository analysis tools currently exist,
such as CVSAnalY [6], CVSMonitor [7], CVSPlot [8],
and CVSStat [9]. They collect and present statistical
information from CVS files and logs. Most of these tools
are mainly suitable for open source projects that span a
long period of time. They focus on component size, file
revisions, work effort measured in LOC, and all of them
can present trends over time with a selectable time
granularity. Our research delves more into the types of
CVS operations, a wide variety of collected data

parameters, and the use of KDD techniques. Ultimately,
the goal is to provide a rapid-feedback, process-mentoring
tool for novice developers in a small-team environment.
The various diagrams we produce are more aimed to assist
users in locating poor work habits or work imbalances.
Besides having instructors monitoring the teams, the
teams themselves can see and reflect on their own
progress.

5. Conclusions

In this paper, we described our purpose for analyzing
CVS repository histories, outlined the various data
parameters recorded in our database, and introduced
selected charts and reports for use by instructors and
students. Some of the diagrams have been embedded into
the Eclipse environment as a plugin. Indeed, an entire
environment for process and design mentoring, called
JReflex [4] is being developed. Future work consists of
polishing this environment, implementing more case
studies, and accumulating more data for KDD analysis.

References

[1] D. M. German, Using software trails to rebuild the
evolution of software, Proceedings of the International
Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA), September 2003.

[2] J. Han, M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann, August 2000.

[3] Y. Liu, E. Stroulia, Reverse engineering the process
of small novice software teams, 10th Working Conference
on Reverse Engineering, November 13–16, 2003, pp.
102–112, IEEE Press.

[4] K. Wong, W. Blanchet, Y. Liu, C. Schofield, E.
Stroulia, Z. Xing, JRefleX: towards supporting small
student software teams, OOPSLA Workshop on Eclipse
Technology eXchange 2003, pp. 50–54.

[5] CVS, http://www.cvshome.org

[6] CVSAnalY, http://barba.dat.escet.urjc.es/index.php?men
u=Tools&Tools=CVSAnalY

[7] CVSMonitor, http://ali.as/devel/cvsmonitor/

[8] CVSPlot, http://sourceforge.net/projects/cvsplot

[9] CVSStat, http://www.gnu.org/directory/all/cvsstat.html

36

�����������	
��
���������
��
�

�

��������	
�
�
��
����������������	������������������

����������	
�	�
��
���	�������	

����������	
�	�����
����	��	�����	

���
��
�
���������
�	������
����
���������
�	���������
���������
	

�

�

�

���
��������������
���
������������������������� ��!��

������	��
	

��	�	 �������	 �
������	�����������	��
�����	 � ���	 ��	�	

�����	���	�������	�
��	
�	�
�
�����	� ��	�	�����
�����	

����	 ��
�
����	 ����
����	 ��!
�������	 �
�
������	

�����������
���	 ��������	 �
���	 ���	 �
�	 ���
����	

�
�
�����	 ���������	 ���	 ���������	 �
�����	 ���	 ���	

�������	 ��	 �������	 ���
���
�����	 " �	 ����
�������	

��
��	 �
�
����	 �
�����	 ���	 � �	 ���������	
�	

���
���
����	 ��#�	 ��	
����	 �
�	 ��������	 �
	 !
���	 ���	

�$��
��	 � �	 ���
���
����	 ��	 ��	 ����������	 ���	

�����������	 ��� �
�	 �
����	 � �	 ���������	 � ����	
�	 � �	

�
������	�����
�����	��
�����	

��	 � ��	 ������	 ��	 �������	 �	 ������
�#	 �
�	 � �	

��������	 ���	 �$��
����
�	
�	 �
������	 ���
���
�����	%
�	

����
�� 	�������	��������	 ��� ��!
��	 �
	 ���������	���	

������	���������	�
�
�����	��
�
���	��	�	�����	"

��	

� ��	�$��
��	� �	��������	�
����
������	� ��	���
�	�
�	� �	

��
�������	
�	 �
����$!
�����	 �������	 �	 �
�
����	

�
������
�	 �
	 �$�����	 ������	 ���	 �������	 �
�������
���	

� �� 	 ��
����	 ���
�����	 ����� ��	 ���
	 � �	 �
������	

�����
�����	���	�����������	��
�����		

&�	 �������	 �	 ��
�
����	 ������������
�	
����	 � �	

'��� �	&��(������	��
����	��	�	����	��
���			

�

�

����������	�����
�

"	� �� �#!�����
�������� �	$�	����	$� !��%����� ������ �
� ��

���$���	�������
�����#�����

��
���
����#�������	�
������

����������!��	�������!������
���������������
���

��
�

�	������ ��&������	�� ������	�
��
!����������	
�� ��
�$	�

�����
�� ������ ��$� ��!���
�� �
��� ��	���
�� ����� �������	��

!��!��� ������� �	�� �!����� ���
�� ������$�	���
� �#!�
� ���

������	�
�������#!�����#���
�����	��������	����!�
������
���

����������	��!��
�
� �	���
��������������!��	��!����

��

��� ������ ��� �
����� ��� !�
�� &�����
� �$��	
�� ���
��

��!�
������
�� '��� �(��!���� �	�� ��$��� �
�� ������ ����

����
� ��� �� ������	� ���!�	�	��� ��������
!��������

��&������	�
���������	�����������������	���������������

��� ����� ��� ��(� �� ��$�� ����� �����
��#� ��� ���� ����������
�

�	�� ��!�
������
� ����� ������ ���
�� �	
���
� ��
�� ���

����	����!������
� ���� ��
�����!����

�	$�
����&�����
��

���
� 	�������#� ��$��	�
� ���� ����	�	$� ������ ���� 	���

������
���������������"����
������
������������������������

������
��	��$����	
�$����	�������
��������!����

����

"	� ���
� !�!���� ��� !��
�	�� �� ���������� ���� ����

�	��#
�
� �	�� �(!�������	� ���
�������� ��!�
������
�� ����

�!!������ !������
� ������
�� ����	�&��
� ���� ����

�	��$�����	�� !����

�	$�� �	�� ��	�$���	�� ��� �������	��

�#!�
����������	�
�!���������#����������������������

����� �	��$�����	� �	����
� �
� ��� ��	�!������ �������	��

�����
�����
������	���
�	$�����	��!����� ������������	�

���)���)
����� &���#� ��	$��$�� �	�� �

��������

�!���������	��	�����������	�����
������
�!����

����������

����	
�������!��(�&�����
�����	��	��#������&��
���	
����

�(������ ���	�
� �	�� ����������	
�� ���� ��	�$�������#� ���

����� �
� �	����	�� ��� ���� �
�� ��� �� ����)����$��� �����	�

������
��
#
�����

���� ��	��������	� �
� �� ���������� ���� �	�����	����

�	��#
�
��	���(!�������	�����������	�������
�����
��*����

�����
������ �
� �	�&��� �	� ������	� ��#
�
�� �������	��

����	�&��
� ����� ��� ��� �!!����� ��� �(������ ���	�	$����

�	��������	�� '�	���#�� ���� �����	����	� ��� �������	�� �����

�����
��	���(���������	��������	������	���������������

�����
�������	�	$����������!�
������
��

+�� !��
�	�� �� ��
��
���#� �
�	$� ���� ������!��	��

�����	$���
����������!�����+���
������!��%����,�-������
�

�
� ���� ���	� �����	������	� �������� ������	� ����

������
� ��� ���� ����� ,.-�� ,/-�� +�� ��!����	���� ��

!�����#!�� �����
���
� ���� ����
� �	� !�������� �
�	$� ��

�����������������
��!��������

 ����	�� �!!������
� �	���	�	$�
�������� ��!�
������
�

��	
�
�� �	� ��)����
���!�
� ��������� ��� �� !���������� �����

�����������
��
���!�
���	�!���������������
�������	�����

�����
#
���� �	�� !������� ������
� ,0-�� ,1-�� ,�.-�� � �����

����	��#��
���� ��
������ �
�
�����	$� ��� ��	
����� �������

������
�� ��� �	��������	� ���������� ����	�&��
� ��� ���� ����

��	�!������	���� ��!�
������
� ,2-�� ,3-��'�	���#�� ����
������

�
!���� �
� ��
�� �	� ��!����	�� ���!�	�	�� ��� ���� ��	�	$�

37

!����

�������������	���������	�����(!�����	�����$���	���

�����,��-��

�

������� �������
�

"	��	#�!����������
��������!��%����������	��	��������
�

����� �������	�� �����
�����
� �	� �������	�� ������
�� ���
��

�����
� ��	� �	������ !��%���� ������	�����	� �
�	$������

!����

�	$� ���!����� ������
�� ���� !�$�
� �����

��
�����	���
� �	��������	� �	� �������	�� ���
���
�� ������

��

�$�
� ������ !��%���� �����	������	�� ��!���
� �����

��$�������
�
�� �����������	��	��� �(��!��
������������ �
�

���	�#� ����� ��(�� �����
���� ������	���#� ������ ���

���������� ��� �	#�� � ���� ����� �
� ���	� ��� �!!�#�
����

��������	$� !����

� ��� ���
�� �����
�����
� ��� !�������

�����
��	������������������������������
�������������	��

��	�!������ �	� �� ������
��� �	��� ���� ��	��	�� �
� �	� ����

������
�������	��
�����������(�
��	$�����	�&��
�����������

���������	�����
�����
������456������	�&�����
��
����
���
�

!����$�
������	��	��#���
��	��
���	��

�����#�������
��	������)��	
���	$���
���
�����(������

�	��������	� ����� �� �����
������� �����#� ���� �	�� ��	���#�

���������	�������������
������
�
��!��	�����
��	���	$�����

��������� ��� ���� �����
������� ���� �	��������	� ����� ���

��	�� ��� �(������� �	�� ���� ��������� ����� �
� !�

����� ���

��������	�����
����!����

��'���������!�$������
���!���
�

!��
�	$�7��6���(������	$�������(���������������	���	��

���������
�����
��	�������(���	����������$
��"	��	�������

��

�$��� ���� ���	�
������ ��� ����� �
� ������
�#� ����

��

�$�����������
����	
�����������
��%������	���������

��������!����	������������

8��������#�����$�����
�������	
���������������(��������

�������
�������	����������
��	����������������������������

��� ������� �	��� ����������
���
�	$��	��(�
��	$� ����������

��	���
��!� �
� ��� $�	������ ���� ���
� �	��������	� ���� ��

!���������������	$��������	������
�
��!��
����!�����������

������
�������#��	�����������
���	������
�!�

��������
�����

�����	��#
�
�!��
���

"	� ���� ��
��
���#�� ���� �	��$�����	� �
� �����#�

����$�����������	���	�����
�%�
���	�������
�����9�������

��

�$�
����

�

!���������������������������
�

���� ���������$#� ��!��
���
� �	� ������
�
�

����	�&��
� ���� ��	�$�	$� ���� ��	��	�
� ��� ���� �����

�����
�������������
����������
�	
���#������	������
��

������
�
�� � ���#� !������� ���� ��
��� �	���
��������� ����

���$�� �(�
��	$� �	��������	�
#
���
� �	� �� ����� ��	$�� ���

�!!�������	� �����	
�� ����#:
� ������
�
� ���� ����� ���	�

%�
�� �����
� �	�� 456�
������	�
�� ���#� ��	� ��	�$��

�������������	��	��� �	�� ���#�!������� ��	����	����#� �����

����� �!�� �������#�� ��!�������	�� !�������	�	$�� ����� ����

�������
� ����� ���� �
����� ���� ��	�$�	$� ���$�)
����� �����

���������	
�� � '���� �� ����� ��	�$���	�� !��	�� ��� ������

������������	�����������	����
����������������������������

����	��$����9�

�

��� 8	��������#��������

������
����$���	��������

��	$��$������

�������
�;<�= ����= ��456>�

����
��	����
�������	�$�	$��������

.�� ����

��������	�����������	�$���	���������
�

;�������(���	��(�	$��?�6�����>9��������
�
�!!����

����	�������	���$��
������?�6��	��
!����������

�	��(�
�������	�$�	$���(���

/�� �	��#���
9���
��������
�
�
#
���
�����������)�	�

�
"
�����!�������	$�����	����
����
������

�	��#
�
��������	����!��������6�
��	�������

��	�	$��!!�������	
��

�

+�� ������ ����� ��� !����

� ���� �����
�����
� ;�	� ���
�

!���������� ��
�� �	� ������ �����
�����>�� �(������ �
�����

�	��������	� �	�� ���	� ����� ���� ��	��	�� �	��� �	�

�!!��!������
������ �	� ���� ������
��� "	
����� ��������	$�

���!�
�����(������
��������������
��
��	�������	$��$�
�

�����456����?
��������

���&�����
��$��	
������������
���

"	������������	$�������
��

�
�����#!�
����&�����
������

��	�!�
��� ����	$� ����	��$����� ���� ��!��������
���������

%�
����
���������

"	� ����
�������� �	$�	����	$� �����	� ������ �
� �������

��	$�� ��� &��
���	
� ����� ��� ��	�� ��� �
��� � +�� ��	�

!�������	�����
����	�������#
9�����	������	��
�������

"	� ���� ����	����� �
!���� ��������� ����� ��� �	��� ��� ��

���!�	�	�� ��
� ���	� ��
����� ��� ���� ��&������	�
� ���� ��

���������������������������$���
���(������	������������

"	� ����
������ ������ �
� ��� ���� �	����
��������

������!��	�� �	�����
� !��!���� �!���� ����� !����������#�

������
� ����� 	�����
� ��� ��	�@#���� !��� ������!���� ��� �
�

��
�� �	����
��	$� ��� �	��� ���� �
� ���� ���	� ��	��� ��� ��

!����� ��� ����
#
����� ���� �
� ����� ������� �	� �������	��

!��
�
���������

'��� ����� ��
�
�� �	�� ��	� ������ !��!��� ��� �

��
�

;������	�
>��	����������
��	��������	��
��	�����������
���

"�� ��� ��	�� ��� �	��� ���� ��
� ���� ����� !����������

������!��������	��

�����&���#���������	��������������

�������� �	� ���� �� !���������� !��
�	�� 4������� &�����
� ����

!�

��������$�������	�����������$
��!�	@��(����������

������
�����
�����
�������	��������	������
����������#
�

��� ���������� ��� �� $��	��� ���� �	�����	����#�� ���� ��� ����

������$�	���#� ��� ���� �����
�����
�� ��� �
� 	��� ����#
� ����

��
����+���������!��!���������
�����
�������
���������
��

��!�

����� ��� ��������� �	�� ���������� �	� �	� ����������

��#��

4�� ����� �� &���#� ��	$��$�� ��	� ���!� ���	� �	�� �
�

�	����
���� �	� �	��������	� ���������	������ �
�!�

����� ���

���������� � '��� �(��!���� �	�� ��$��� ��� �	����
���� �	� ����

	���������������!��
��	���!��%�����������
������#����	���

��$
� ������ �� �����
�� ������ ���
�� &�����
� ���� �#!�����#�

��!���
� �	� ����
����
� ��� ���� ������!��	�� !����

�� ����

38

��$���	�������
�	$���������
��������
�������
���
#������	�

�	#��#!�������!������

������
�
� ��	� ��
�� ���!� �	� ���� ��
�����#� !����

���

���� ���
��
��!� �
� ��� ���� �	��������	� ���������� ���������#�

�(�
��	$� ����� ���������� ��!��������
�� ����� ����������� �
�

!��
�	���� ��������� �����	
� ��%���
� ����� �� ������ ����	���

��	�����	�� "	��������	� ���������� �	�����
� �����	�	$�

��%���
� ������ �� &���#� �	��� �����
�� ��� ��
� !��������
����

	���������#���	���	���	��������
�����������$���
�,A-���

'���)��(��
�������������������

�$�
� �
��
��������	�

������������	$������!������������!�����
����	�����������"��

�
���
��!�

����������
����������
������������!���������������

�������"	������������(��!��������
��	����
��	$�������������

������	�
�����������!���!���#�����

��� ���
�!��	�����!��
�	����������	����	����#���������

�
��� ��	� ��	� �� &���#� �$��	
�� ���� ������
��� "�� �
� ��
��

��!����	�� ���
��� ���� ������
���������� ����������
�� ��	�

����	$�� ��	��	��
���)������������#� �
�	$�
����
������

����	�&��
���

������ ���� �������	��
����
������ ����	�&��
� ��� ��
������

����� !�����	
�� "	� ���� ����������� ��� �
�� ���
����	$� ���

��
������ $���!�	$� ��� ������	�
� ,�B-�� "	� ���� ��
��� ���

��	�� ����
�����
����	$��
��	��	
�!����
������

��������	�

�����������

�$�
� �������	�$�����
��	�������������� ����

�����	������	��������������!��	��������
���������������

+��������������������	��#
�
��	���(!�������	��	�����
�

�� 	������ ��� ����	�&��
� ����� &���#� ��	$��$�
��

�	��������	� ����������� �	�� ����� ��	�	$�� ���	$� �����
���

������
�
� !������� ����
�� ���� ���
�� ����	�&��
� �	�
����

����������)�������	��������������	$�������������$������

��� ��	�� �
����� �	��������	� �
� ���� ������	$��� "	� ����

�������	$�
�����	�� ��� !��
�	�� �� !�����#!��

��!����	�����	������������
�!��
�	����
�������

�

�

"��#����������$���$���������
�

���
�
�����	� ��
�����
� ��	���.�� �� !�����#!�� ����

��	�	$� �	��������	� �����
�������� ��!�
������
�� ������

���� ���� !���
� ��� ���� ��!����	�����	9� ���� �����	�� �	��

���� �
��� �!!�������	�� � ���� �����	�� ��	
�
�
� ��� ����

������ �������	�� ��	��	�� �	����������� �(�������	� �����

��������

�$�
���	��!�
�)!����

�	$��������!!�������	��
�

������ �	�������� �������
���	��������� �������
�����������

����� ��(��
������	$�� ���
���� ����
�	$�� �	�� ��!����	$��

���	$������
��

��	���� ��	
� �	� ��!� ��� �	�������� A�.� ������
�������

4�����
� �
� ���� �!�����	$�
#
����� ���� ������
�� ��	
� �	�

�	�������	�������� ����������)�������
���
��	���
�!������

�	��� ���� ���� �!!�������	� �
� �� ��(� ���
4
� ;
6@456�

4������
�$�
>��
6@456�� �	�� <4
� ;<���� 4������
�$�
>�

�������

���
.���������������	
������

�����

�

�

"����%�	&����
�

�
���	���	�������������������
���
�$	�����	������	�����

����������	���
���������	������(�������	��������	��������

!���������� �����
������� ����	$� ��� ���������� �	� ��

��	
�
��	�����������	����	���#������	$�����	�����������
�����

'���������
����������!�����������!��	�������	$���
���

�����������������
����������������������������,�-��*����

�������� ��	
�
�
� ��� �� ���$�� 	������ ��� ��������

�$�
��

���� ���
��
��!� �
� ��� ��	� �	� ������ �(��������
���!�� �����

!��
�
� ���� �������� �	�� ������
� �� ����� !��� ������ !��
� ����

������ ��������� ����� �
� �
����� ���� ������ !����

�	$� �����

������������������������(����������
��$�	�����
���
!������

������������������
��������#�������
��������������������	��	��

�	��������������������
�����
�!����������������	$�!����

�

�������
�����
�������������	����

C��������������	��	���
��	
��������������
������	����

���!�������
����!�
�)!����

�	$���
�
���������
�
���	$��

�����
��!��� ����	� �!�
���!�
� ��� ����	���� �	��������	�

���������� �	�� ��	�	$� �!������	
� �
�	$� ���� ������� ��(��

�
"� ,D-�� � '�$���� ��
��������
� ���� �����	$� �	�� !�
�)

!����

�	$�
��!
��

�
���
��!������
��
��!��������456�
���!�
�$���!�������

��

�$�
��#�������	��#����� �C��������	��

���&�����
�

����� ��	� $���� �
� �	��������	� ������ ���� �������� �	� ����

������!��	�� ��
�� ;
������ �	� ���� ������ ��	�
�>� �	� ��

!�����������������������

�
��������������������
���	�
��
������
���������������

�

�
�
'� ��������������	����(������� (���������)���	����� ����

�$����$���� ����

�

����	$� �	��� ����� ����	���� �������
�� ��� ��	�� ���

����� ���� ���� ��	��	��
����������� � '��� ���
����� ������� ��

���!�������������(���	����
������������������
��
����
������

*�����

*(��������

456�6������

8�����#�

*�����

4������

'���)��(��

������	$�

 ��
����	$�

E�!���
�

39

���� �����
� ������ !���������� ��!��
�� �������� !������
� �	�

�	��(� �#!�� ���� ����� ��(��
������	$� ����� �
� ���������� ����

&���#�	$� �
�	$� �	� �(��	
��	� ��� 456�� � =����
�� ��� ����

�������������	���������

�$�������������������������	��

��(�� �	��(��	� ����
��%�����	�#��	����
���	���	���	�����

���������	��	����'����(��!������������������(���	��(��	���

����������

��������������	$������	�9�

�
�������
��� ���	
��
� ������	�
���� ���

��� �!"��
������� ��
"���
�������#�
�����������
����$���

���

�� ����)��(��
������ &���#� ���� ���� ����� <���� ���	� ��
�

�����������	$�����9�

�
��������
���%�������%�������
���
���	�
��
�����������
����� �%$&�	�$�'(��

�

���� ��	���
��!� �
� ��� �!!�#� ��(����	�	$� ����	�&��
� ���

�������������	��������	���������	����!�����	
����	����#����

���	$�������
������	������
����	$���$������������!������
�

�������!�������	����������	��	����������
���
������$�����
���

F
	�!
���G����������	��	����	�������	��
��������������	��

������
������
����	��	����	��!�����������������������

���

��������	�� � ���� ���
���
� ��	� ��
������ ���� ����
� ���

���	��	����
���	����������	$���
������	�����
�
���#)���	�

���
����	$� !����$�� ����� �
� ��
�� ���������� ����� ����

������
��� 8
����#� ���� ��		�	$� ����� ��� ���
� ���
����

��$������� �
� %;	H�H�>� ������ �� �
� ���� 	������ ���

������	�
��#��
�����	������������
���
���	��������	������

�����������	
���'������
�!�����#!������
���#��I�.BB��	����I�

2�� ���� ���!��� ��	
�
�
� ��� �����
� ����� ��	���	� ����

��
���!���	�� ������
�� �	�� ������ ����� ������ ���� ���
���
�

�	��������	�
����������	$����������

�

"����*��������	������

�
+��������������� ���	�)�	�������!!�������	� �����
��
�

��� �(!����� �	�� ��
������ �	��������	� ����� ���� �����	$�

��
����������	�)�	����	
�
�
�������
����	������������������

�
�����	�
������������������

�$�
������
�����
���
����	�

��!���
�� ���	���#� ���	� ��	��������
� ��� ���� ��
��� �	��

����
�������	��������������	��#��������	�����������
���

���� �
��� �	�������� �
� ��
��� �	� �� ���)����� ������

������ ���� �����
����
���
�
���������� �	�� ���� ��$���
�����

��	��	�� ��� ���� ���������	� ��� ������ ��

�$�
�� � ��	����

!��
�	�
�����
��������
���
��	�����
��������
9�����
��������
�

�������#�������	���
������������
��������
������
���!���	
�

����� �����
�����	��!�	� ���
��� �������
�� �������$��� ������

���
� ��	��	�� ;������ ��

�$�
>� �	�� ��

�$��

�!������	
�� � ���� �!������	
� ���9� ��

�$�� �����

��$���$����� &���#� ����
�� ���	� �����
�� �	�� $�
��

;������	��
�����#>��

'�$����.�
���
���!�������������
����������F!����

�
��

������
�� �
�G� �	�� ���� ���� �������� ������ ��

�$�
�

;������	�
>���$��	���
��
���	������������������

�$�
�

�	� ���� ��$��� ������ �	�� !������� �!������	
� �	� �����

�

�
�

'� ��������+��� �	��������������$�����
���$����	����	�����

�

�

� �

40

,����������
�
���� �����	�� ������
�� ��	���	
� ������ 1.�BBB� ������

��

�$�
���������	��	���
�
�����������	����	������
��������

�#��������������������	��
�!�������	����	������
���
����������

���������� ���� ����
�	$� �	�� ��
�����#�� � ������ ���� ��

	��������� ��!���
� ���������� ���������	$� ��
��!������!����	�

�	������������

�$����������!���#�����

�������$�� ���� ��!����	�����	� �
� ��
�������� ��� ������

��

�$�
��	�#�������!����
���������	��	$
����,�.-��	�����
�

��� ����
���� �	�� !������!����	� ��� ���� ������!��	��

�����	��#���

���	$��� ����������� ���������	���
�	$�������
�������������

��� ��	� ��!���� !������!����	� �	� ���� ��
�� !���#�����
�	$� ����

�������	$�&���#9�

�
�������������%������������������
���	�
��
������
�����������)��
*���"��!���������
�������!�����������

�

���� !�
�� �	�� !��
�	�� ��
���
� ���� ��	
�
��	�� ����� ����

!������ �	��������	������������	���	��!�
�� �����������
�

,�-�� �+����	� ��
�� ��!���� ����� �������	���	��������
������

���	����	$�
����	
�
��	��#����������������������!��%�����

������ ��
���
� ����� ��� ��	
����� �	����
��	$� ����� ����

���������	$�	����	$�!��
!������������
�������
9�

• +�� ��	� ���	���#� ���� ����	��� ���	�
� �	� ����

���������	� ���
����	$�� �	�� �
� ������
�#�

����	���$#�� *(��!��
� ���� ���
���
� ������ @8	�(��

������#�� �����#� ��	�$���	��� �	�� ������
�� ����

���	���	���
�������!����

��������������
���
�����

������ �����
�
�� ����� ���
��	
�� !�����
�� �	�� ����

�����
�����	$�
����������	����������
��

• �
��	��	#�!��%�������������#�
��$�
���	���	������
����

!����

� ���������
�� =�����	� ���� ���
�� �	��
���	��

#����� ������ �
� �� ���� ��� �������� ������ ���� ����	$�

!����

���������������������
��������

•
��!��� ���	$�� ����� !����
� ���� ��	��	���

!������!���	$� �	� ���� ��
��� ���
�
���
� ����

��������	�����������	��!�	�
������!��%���
��

�

-��.��	������������'������*��&�
�

+�� !��
�	���� �� ���������� ���� ���� �	��#
�
� �	��

�(!�������	� ���
�������� ��!�
������
� ����� �����
� �	�

������
�� ����	�&��
�� +�� !��
�	���� �� !�����#!��

��!����	�����	������������
���
��

���
������������!��%����

�
�
� ����������� ������
�� ����	���$#� �	�� ��� ��	� ���

�!!���������������!�	�
������!��%���
���+������
������������

��������
���
����#���	��	��	���������
���	�����!��%���
��"��

�����
��
��������	����
�����������������	�������!�������

&�����
������	������
�!��
����������	�	$�����	�&��
��

+�� ����� ����� ��� �	
����
����
�������� !����

�

&��
���	
� ����� !������!����	� �	� ���� ������!��	�� ��
�� �	��

��
�� ��
������ ���� ����	���$��
� ����	�� �!����� �
�	$�

���
����	$���

+�� !��	� ��� ��	��	��� �����	$� �	� ��	���� ����� ����

#
����!��
!������� �	���	� ���� �����������������$#��+��

��
��!��	���� �	��$����� ���������	��
���������������
������

�������!�
����#��	��������������$�������
��
�������	������

�� �	������ �	�� �	��$������ ����� ��� ���� !��%���� �	�� ����

������	�
������!�	#�	$�����!��%����������!��	����

�

/���������	���
�

,�-��!�����+���
������!��%�������!9@@���!���!�������$�

�

,.-�E��'�����	$��	�����J��
����F�����!�����7��
�4������

��%���G���)))	��������	�
��
�������;D>��<��#@��$�
��

�AA1��

�

,/-�E��'�����	$�F4������6�����
��!��	������!�����

��%���G���
���	
�	� �	'�*���K����D.��C���D���!�����AAA��

�

,D-����������(��A�.�E�����	���������;.BB/>���

�

,0-���������	�F8
�	$�
�������������
����������������

��������	����
�������G������	&
�#�
�	
�)�
�
��
�	
�	

+����(�����	���
������	�
������	'��������
��������

C�������	�
��4�!�������.BB/��

�

,2-����L�������		���	����F��	�	$�K��
��	
�7�
�����
����

������4�������� ��	$�
G��,�
��������	
�	���)��

4�����	���8J����#�.BBD��

�

,1-���������
��E��'�����	$���	��<��7���
����F���� �
��

4�����
�����!�	�4������4��������������!��	�9��!�����

�	��������G��'�*	"%�)*��K��������C���/�<��#�.BB.���

�

,3-�4��J���$�������	���F���������� ���$��������	�

��$�����������*���������4���������������G��,�
��������	

�	�&,�)�	4�!�������.BB/��

�

,A-�E��=����)M���
��	��=��E������)C�����*
����	

���
�����
�	-��������������
�)+�
��#�;�AAA>���

�

,�B-����<��	���������#���	��
��'�#		�F����� ��
����	$9���

E�����G��'�*	�
��
����	�
�������K���/���C���/��

4�!��������AAA��

�

,��-���������
��	��<��7���
����F*(!����
��=���
��9���

5��	����������!!���������"��	���#�	$�*(!����
�G��

,�
��������	
�	���)������	���'6��.BB.��

�

,�.-���������
��E��'�����	$���	��7���
����F�� �
��

4���#�����!�	�4������4��������������!��	�9�����

�!�����4�����G��,�
��������	
�	���)�6���������"����	���

"***��.BBB��

41

Empirical Project Monitor: A Tool for Mining Multiple Project Data

Masao Ohira†, Reishi Yokomori‡, Makoto Sakai††,
Ken-ichi Matsumoto†, Katsuro Inoue‡, Koji Torii†

† Nara Institute of Science and Technology
ohira@empirical.jp, {matumoto, torii}@is.aist-nara.ac.jp

‡ Graduate School of Information Science and Technology, Osaka University
{yokomori, inoue}@ist.osaka-u.ac.jp

†† SRA Key Technology Laboratory, Inc.
sakai@sra.co.jp

Abstract

Project management for effective software process im-
provement must be achieved based on quantitative data.
However, because data collection for measurement requires
high costs and collaboration with developers, it is difficult
to collect coherent, quantitative data continuously and to
utilize the data for practicing software process improve-
ment. In this paper, we describe Empirical Project Moni-
tor (EPM) which automatically collects and measures data
from three kinds of repositories in widely used software
development support systems such as configuration man-
agement systems, mailing list managers and issue tracking
systems. Providing integrated measurement results graphi-
cally, EPM helps developers/managers keep projects under
control in real time.

1 Introduction

In software development in recent years, improvement of
software process is increasingly gaining attention. Its prac-
tice in software organizations consists of repeatedly mea-
suring the development activities, finding potential prob-
lems in the processes, assessing improvement plans, and
providing feedback into the processes. Project manage-
ment for effective software process improvement must be
achieved based on quantitative data.

Many software measurement methods have been pro-
posed to better understand, monitor, control, and predict
software processes and products [4]. For instance, the Goal-
Question-Metric (GQM) paradigm [2] provides a sophisti-
cated measurement technique. GQM guides to set up mea-
surement goals, create questions based on the goals, and de-
termine measurement models and procedures based on the

questions. The measurement based on GQM is a logical and
reasonable method.

However, in its practice, members who participate in
measurement activities need to strive for the measurement
processes on every last detail. Data collection for measure-
ment in general requires high costs and collaboration with
developers. It is difficult to collect coherent, quantitative
data continuously and moreover to utilize the collected data
for practicing software process improvement. Few studies
have proposed measurement tools for dealing with a number
of project data especially in terms of a large-scale software
organization.

As a measurement-based approach to the above is-
sues, we have been studying empirical software engineer-
ing [1, 3] which evaluates various technologies and tools
based on quantitative data obtained through actual use. Our
goal is to develop an environment composed of a variety of
tools for supporting measurement based software process
improvement, which we call Empirical software Engineer-
ing Environment (ESEE).

In this paper, we introduce Empirical Project Monitor
(EPM) as a partial implementation of ESEE, which au-
tomatically collects and measures quantitative data from
three kinds of repositories in widely used software devel-
opment support systems such as configuration management
systems, mailing list managers and issue tracking systems.
Collecting such the data in software development automat-
ically and providing integrated measurement results graph-
ically, EPM helps developers/managers keep their projects
under control in real time.

2 Empirical Project Monitor (EPM)

We have developed Empirical Project Monitor (EPM) [9]
which automatically collects and analyzes data from multi-

42

………

Project Z

Project Y

Code clone

detection
Component

search

Cooperative

filtering

Project

categorization

Metrics
measurement

Data Analysis/Visualization

Data Store

Product data archive
(CVS format)

Process data archive
(postgreSQL)

Format Translation

Data Collection

(Project X) Configuration
management

data

(e.g. CVS)

Mailing list
management

data

(e.g. Mailman)

Issue
trucking

data

(e.g. GNUTS)

Other tool data

Various analysis

tools

Widely used OSS development support
systems (e.g. CVS, Mailman, GNUTS,

etc.) and GUI tools (e.g. WinCVS,

SourceShareTM, etc.)

developer manager

results through
web browsers

Components of EPM

Figure 1. The architecture of EPM in the ESEE framework

ple software repositories. Figure 1 shows the architecture of
EPM in the ESEE framework. The ESEE framework is de-
signed for supporting measurement based process improve-
ment in software organizations by providing various plug-
gable tools. EPM consists of four components according
to the ESEE framework: data collection, format translation,
data store, and data analysis/visualization. This section de-
scribes an overview of EPM and the basic data flow through
EPM.

Automatic data collection: EPM automatically collects
multiple project data from three kinds of repositories in
widely used software development support systems. For
instance, EPM collects versioning histories from configura-
tion management systems (e.g. CVS1), mail archives from
mailing list managers (e.g. Mailman2, Majordomo3, fml4),
and issue tracking records from (bug) issue tracking sys-
tems (e.g. GNATS5, Bugzilla6). Because these data are
accumulated through everyday development activities us-
ing common GUI tools (e.g. SourceShareTM7, WinCVS8),
developers/managers do not need additional work for data
collection. Also, it dose not take high costs to introduce
EPM into projects/organizations because the systems as the
sources of data collection are open source freeware.

Format translation and data store: EPM converts the
collected data into the XML format called the standardized
empirical software engineering data, so that EPM can deal

1CVS, http://www.cvshome.org/
2Mailman, http://www.list.org/
3Majordomo, http://www.greatcircle.com/majordomo/
4fml, http://www.fml.org/index.html.en
5GNATS, http://www.gnu.org/software/gnats/
6Bugzilla, http://www.bugzilla.org/
7SourceShareTM, http://www.zeesource.net/
8WinCVS, http://wincvs.org/

with not only the above three kinds of software repositories
but also various kinds of repositories according to purposes
for measurement. Data from other systems are available by
small adjustments of parameters. The data converted into
the XML format is stored in the PostgreSQL9 database.

Analysis and visualization: EPM analyzes the data
stored in the PostgreSQL database. For instance, in order
to analyze data related to CVS, EPM extracts the process
data about events such as checkin/checkout, transitions of
source code size, version histories of components, and so
forth. Then, EPM visualizes various measurement results
such as the growth of lines of code and the relationship be-
tween checkin and checkout. EPM also provides summaries
of each repository such as information of CVS logs. All the
measurement results are available through using common
web browsers (e.g. see Figure 2), so that users are easy to
share the results.

In this way, EPM supports users to obtain quantitative
data at low cost in real time and provides them with various
measurement results for understanding the current develop-
ment status. This would help users keep their projects under
control.

3 Visualizations of measurement results

Data mining techniques for software repositories have
been proposed to understand reasons of software changes
[7], to identify how communication delay among devel-
opers in physically distributed environments have effects
on software development [8], to detect potential software
changes and incomplete changes [11], and so forth. In con-
trast to these tools, the features of EPM are to visualize

9PostgreSQL, http://www.postgresql.org/

43

Figure 2. Measurement results through web
browsers

combinations of measurement results from three kinds of
software repositories and to be able to deal with data from
multiple projects simultaneously.

3.1 Combinations of measurement results

In addition to providing visualizations of measurement
results from each software repository, EPM also visualizes
combinations of measurement results from three kinds of
repositories. The followings show two examples of them.

Bug issues and checkins: Figure 3 represents the re-
lationship between the transition of the cumulative total of
issues (the line graph) and the time of checkins (the grayed
vertical lines on the X-axis) in our EASE project [6]. The
number of issues and checkins are measured from the repos-
itory in GNATS and CVS respectively. A checkin often oc-
curs after bug issues are reported because developers try to
modify or resolve the issues. The graph helps users (de-
velopers/managers) remember the situation where issues by
every file versions were raised. To the contrary, the file it-
self which is checked in CVS may include some bugs if the
graph indicates that there are issues after checkins.

Bug issues and e-mails among developers: Figure 4
illustrates the communication history among developers in
the EASE project. The black line graph is the transition
of the cumulative total of e-mails exchanged through using
Mailman. The vertical shorter/longer dashed lines repre-
sents when bug issues were raised/resolved. The light-gray
vertical lines mean when the checked-in files by developers
were uploaded to CVS. From the graph, users can confirm
the state of the communication among developers and iden-
tify the file versions which might have problems. Because
discussions on issues become active usually when issues are

Figure 3. Relationship between issues and
checkins

reported to an issue tracking system, the communication it-
self among developers might have problems if many issues
are reported but developers did not discuss on the issues.
Communication problems among developers bring the de-
crease of software productivity and reliability [8].

Figure 4. History of bug issues and e-mails
among developers

The integrated measurement results based on data from
configuration management systems, mailing list managers,
and issue tracking systems help developers understand cur-
rent and past events in development activities.

3.2 Visualizations of multiple project data

EPM has the capability to visualize multiple project data.
Comparing current projects with past ones would be help-
ful for managers to estimate the progress of projects and to
detect the unusual status in projects.

44

Comparison of measurement results among multi-
ple projects: EPM makes measurement results compara-
ble with multiple projects. Figure 5 represents the relation-
ship of the growth of lines of code between two project (the
upper line: SPARS [10], the lower line: EASE). The both
projects have been proceeding under the collaborative re-
search with authors’ universities and some software com-
panies. Some researchers and developers have been par-
ticipating in the both projects. Actually although the both
have different purposes and aspects, suppose here that they
have been developing software systems respectively under
similar conditions. The project managers can confirm some
common characteristics and roughly estimate the progress
of the later project (EASE) from the graph. For instance,
SPARS has the two phases in which it have evolved rapidly
for releasing major versions. EASE has just released the
first major version. The managers are easy to guess the near
future of the progress of EASE: the development of EPM
will stop for a while to test the EPM, to reconsider the de-
sign, and so forth.

Figure 5. Comparison of two projects

Distribution maps of multiple projects: Using mea-
surement results from three kinds of repositories in multi-
ple projects, EPM can generate distribution maps. Figure
6 is a distribution map using 100 Open Source Software
Development (OSSD) projects data collected from Source-
Forge.net10,11, which represents the relationship between
lines of code (the X-axis) and number of checkins (the Y-
axis). Suppose here that these projects are managed by one
software organization. The graph can be used for help-
ing managers identify “unusual” projects which indicate ex-
treme high or low values.

10SourceForge.net, http://sourceforge.net/
11We selected the 100 projects in Figure 6 randomly from the list of

most active projects in SourceFroge.net.

Figure 6. Distribution map of 100 OSSD
projects

3.3 Customizations of measurement parameters

EPM currently provides users with the five types of
graphs including Figure 3-5 and two types of summary in-
formation from CVS and mailing list data. Users have the
choice of visualizing single project data or multiple project
data according to purposes of analysis. EPM also pro-
vides an interface to customize queries for the PostgreSQL
database. Using the database schema for EPM which is
open to the public, users are able to input SQL sequences
and to create bar graphs, line graphs, and distribution maps
such as Figure 6. Because we would like to support var-
ious projects and organizations which have own problems
respectively, we decided to provide the minimum types of
graphs and summary information rather than to provide a
lot of them in advance. After feedback from software orga-
nizations using EPM, we will add other types of graphs in
the near future. Currently EPM can be viewed as a tool for
exploratory data analysis [5].

4 Discussion

In this section, we report a case study of applying EPM
to our project itself, in order to observe the actual usage of
the pre-defined 5 types of graphs mentioned above. We have
interviewed four developers on the advantages and the dis-
advantages of using EPM. The development environment of
this project is summarized in Table 1.

One of the advantages is that the graphs make developers
easy to understand the status of the project by identifying
distinctive parts indicated in the graphs. For instance, the
part of the flat line in the LoC graph reminded them why the
development seemed to be stopped. In fact, all developers
were on a business trip at the time. This could help them

45

Table 1. EPM development project
Target project EPM development project
Programming language Ruby, Java
Number of developers 4
Repositories CVS, Mailman, GNATS
Development period 3 months
Preparation period 1 week

increase the accountability for their managers. Other one is
that the graphs generated in real time motivated developers
to fix bugs, since they could be aware that there were still
unresolved issues.

In contrast to these advantages, some problems related
to the usage of EPM have been found. One is that visual-
izations are too complicated to understand the status of the
project in some cases. For instance, developers could not
distinguish which file versions corresponded to which ver-
tical lines in Figure 3, since one developer checked in CVS
for backup of his files every day and therefore a number of
checkins occurred. In this case, developers might need to
use two CVS (e.g. one is for software release and another
is for backup).

The above results are still the initial evaluations for EPM.
EPM will be introduced in some software companies in
the near future. We intend to evaluate the usefulness of
EPM with respect to (1) the effects on software develop-
ment and process improvement by providing measurement
results from multiple software repositories, and (2) the ben-
efit of giving the capability to manage multiple projects.

5 Conclusion and Future Work

The goal of this research is to construct an environment
for supporting measurement based software development
according to the ESEE framework. In this paper, we intro-
duced Empirical Project Monitor (EPM) as a partial imple-
mentation of ESEE, which helps developers/managers keep
projects under control by providing various visualizations
of measurement results related to project activities. Nowa-
days, we can gather and analyze massive data on software
development in a large scale using rapidly growing hard-
ware capabilities. By analyzing such the huge data col-
lected from thousands of software development projects, we
would like to provide useful knowledge and benefit not only
to individual developers/managers but also to organizations.

Empirical study on software development is an active
area in the field of Empirical Software Engineering (ESE).
But the approaches of ESE have not been sufficiently ap-
plied to software development in software industry although
companies hold many problems. The data related to soft-
ware development from the industrial world has seldom

been provided with university’s research. We are collabo-
rating with some software development companies as the
EASE project. Therefore, it would be a strong trigger for
going beyond the obstacle of the technical progress in soft-
ware engineering.

Acknowledgment

This work is supported by the Comprehensive De-
velopment of e-Society Foundation Software program of
the Ministry of Education, Culture, Sports, Science and
Technology. We thank Satoru Iwamura, Eiji Ono and
Taira Shinkai for supporting the development of Empirical
Project Monitor.

References

[1] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic. Manag-
ing Software Engineering Knowledge. Springer, Germany,
2003.

[2] V. Basili. Goal Question Metric Paradigm, in Encyclopedia
of Software Engineering (J. Marciniak ed.), pages 528–532.
John Weily and Sons, 1994.

[3] V. Basili. The experimental software engineering group: A
perspective. ICSE’00 award presentation, June 2000. Lim-
erick, Ireland.

[4] L. Briand, C. Differding, and D. Rombach. Practical guide-
lines for measurement-based process improvement. Techni-
cal Report ISERN-96-05, Department of Computer Science,
University of Kaiserslautern, Germany, 1996.

[5] S. Card, J. Mackinlay, and B. Shneiderman. Readings in
Information Visualization: Using Vision to Think. Morgan-
Kaufmann Publishers, San Meteo, CA, 1999.

[6] EASE. The EASE (Empirical Approach to Software Engi-
neering) project, http://www.empirical.jp/intex-e.html.

[7] D. German and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, pages 63–67, Portland,
Oregon, 2003.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An empirical study of global software development: Dis-
tance and speed. In Proceedings of the 23rd international
conference on Software engineering (ICSE’01), pages 81–
90, Toronto, Canada, 2001.

[9] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue,
and K. Torii. Empirical project monitor: Automatic data col-
lection and analysis toward software process improvement.
In Proceedings of 1st Workshop on Dependable Software
System, pages 141–150, Tokyo, Japan, 2004.

[10] SPARS. The SPARS (Software Product Archiving
and Retrieving System) project, http://iip-lab.ics.es.osaka-
u.ac.jp/SPARS/index.html.en.

[11] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Pro-
ceedings of the 26th International Conference on Software
Engineering (ICSE’04), Edinburgh, Scotland, UK, 2004 (to
appear).

46

System Understanding and Change Patterns

Mining Version Control Systems for FACs
(Frequently Applied Changes)

Filip Van Rysselberghe and Serge Demeyer
Lab On Re-Engineering
University Of Antwerp

Middelheimlaan 1
filip.vanrysselberghe@ua.ac.be

Abstract

Today, programmers are forced to maintain a software
system based on their gut feeling and experience. This pa-
per makes an attempt to turn the software maintenance craft
into a more disciplined activity, by mining for frequently ap-
plied changes in a version control system. Next to some ini-
tial results, we show how this technique allows to recover
and study successful maintenance strategies, adopted for
the redesign of long–lived systems.

1. Introduction

As stated by Lehman’s 1st law of software evolution,
a system has to undergo continuous change in order to
remain satisfactory for its stakeholders [8]. Adding new
features, correcting faults and accommodating for new
changes, are generally considered the prime reasons for
these changes [12].

Unfortunately, the changes applied during maintenance
are seldom documented. Even for refactorings –currently
the best known approach towards a systematic catalogue of
maintenance tasks–, there is no indication which refactoring
is most suitable for a certain situation. This observation can
easily be illustrated by looking through Fowler [4], which
is considered standard work on the subject and counting
the number of conditional sentences. Knowledge on which
changes are most appropriate for an occurring problem or
situation is therefore private to experienced software main-
tainers.

By making this knowledge general, software mainte-
nance can be improved and lose its status of ad hoc dis-
cipline. In order to meet this goal, we propose a technique
analogue to the idea of frequently asked questions or FAQs.
These FAQs are summaries of frequent questions and cor-
responding answers to reduce the continual posting of the

same basic question. Analogue, we propose to identify fre-
quently applied changes (FACs) since these changes record
general solutions to frequent and recurring problems.

To detect such frequently applied changes, a technique
based on clone detection is used. Due to their central po-
sition in modern development processes and their ability to
record a project’s entire change history, versioning systems
contain a wealth of change information. Therefore the data
for the detection process is provided by a versioning system.

In the remainder of this paper we will introduce the tech-
nique, evaluate it and position it in a broader context. The
first section is reserved for introducing the technique (sec-
tion 2). Afterwards, the results of an initial case study to
evaluate the technique are discussed in section 3. Section
4 on the other hand, explores how the resulting change sets
can be used to study software maintenance. Our future di-
rections are discussed in section 5. The last section (6) dis-
cusses related work.

2. The Technique

With our technique we want to focus on how a system
changed during its maintenance. Therefore we are inter-
ested in systems which are able to tell which changes were
made. Typically, version or change management systems
offer this functionality.

Such versioning systems like CVS, ClearCase and
SourceSafe, can be considered as a large source code repos-
itory containing all the versions of a program. However in-
ternally, most versioning systems store the entire source of
one version only. CVS for example, stores the last version
entirely since that is the most likely version to be checked
out for additional editing. Other versions are re–constructed
by means of delta’s, relative to the one complete version.
For CVS, these delta’s record which lines have to be added,
deleted or changed in order to get a previous version. Since
these delta’s record which changes were made, we can ex-

48

tract change information from a versioning system.

In practice, extracting change information from a ver-
sioning system is not difficult as we found out by our ini-
tial study. For this study we targeted the CVS versioning
system since it is used for many successful open–source
projects, providing a lot of changes to study. Using proper
CVS commands, change information can be extracted and
afterwards processed. We combined the “cvs log” and “cvs
diff” commands to extract change data like the difference in
code before and after the change, the date and time of the
change, the file involved etc. Since this basic change data
is stored in about any versioning system, other versioning
systems than CVS can be used as well.

Being able to extract change information from a ver-
sioning system is only part of the technique. Processing
the changes in order to locate frequently applied changes
is therefore the second step in our technique. However,
first, we define a frequently applied change as a change to
the code which occurs multiple times in the evolution of
a system. Since a source code level is targeted, two ap-
plied changes are equal if there is a similarity relation be-
tween the delta of both changes. Locating frequently ap-
plied changes therefore corresponds to identifying sets of
similar code fragments.

A possible approach to locate identical and similar code
fragments is by using clone detection techniques. Clone de-
tection techniques are developed to identify duplicated or
cloned code fragments within a program since duplication
may hinder the program’s evolution. Over the years differ-
ent techniques are proposed to locate clones or fragments
which share the same code but may differ in the naming of
identifiers. Ducasse for example, proposes a detection tech-
nique to locate clones containing a certain amount of iden-
tical lines [2]. Baker on the other hand focusses on code
fragments in which identifiers, which are likely to change
during the duplication process, may differ as long as there
is a one to one mapping between the identifiers [1]. Since
these techniques are developed to locate similar code frag-
ments in a scalable way, we use them to identify frequently
applied changes.

By using clone detection techniques on the changes ex-
tracted from the versioning system, we are therefore able to
identify frequently applied changes.

In our initial study, we started by extracting from the
repository all changes made during the lifetime of a product.
For each change the corresponding delta, which consists of
the code before and after the change, was added to one, gen-
eral text-file. This text–file was later analyzed by Kamiya’s
clone detection tool CCFinder [7] to locate recurring, simi-
lar changes. Since a similar change recurs a couple of times
in the change history, it correspond to a frequently applied
change or FAC.

3. Evaluating the technique

To evaluate the technique, we applied it to study a suc-
cessful open–source system called Tomcat. After more than
three years of development, Tomcat is considered the stan-
dard Java servlet container. Ever since the beginning, par-
ticipating developers can contribute to the project by access-
ing a central CVS versioning system. Therefore the CVS
system contains a wealth of maintenance information un-
der the form of changes. Combined with the knowledge
that the project experienced some major redesign phases,
Tomcat shows an interesting case to explore the techniques
possibilities.

3.1. Finding refactorings using clone detection

In a previous study, we showed how clone detection can
be used to detect refactorings between two versions [11].
We observed how scalability hinders the application of this
technique since comparing all successive versions of a large
system is not feasible. The scalability problem was a direct
result of comparing whole systems rather than the changes
made between two versions. Since the technique proposed
in this paper focusses on the changes, it does not suffer this
problem, yet is able to detect similar refactorings.

3.2. Finding FACs

The goal of our initial study was to explore the kind of
frequent change sets that can be formed when a parameter-
ized clone detection technique as CCFinder is used [7]. Due
to their focus on the detection of similar code fragments, pa-
rameterized clone detection techniques are expected to pro-
duce the most suitable FACs.

CCFinder is a token based detection technique which
searches a specially constructed tree for maximal matches.
Due to its token based nature, the detection process is not
influenced by the code layout. Crucial in its detection pro-
cess is the definition of a length threshold. This threshold
defines the minimal number of tokens that should match be-
fore a token sequence is considered a match. Matches which
fail to meet the length threshold, are not considered match-
ing fragments. Increasing the threshold, therefore makes
the detection of both positive as false matches less likely.
In our study, the impact of this parameter was taken into
account by exploring various thresholds. Based on the vi-
sual representation of the detected matches, we manually
verified the relation between repeatedly found changes. For
these matching changes make up a set of frequently applied
changes.

The sets of identical changes, constructed with a high
threshold value, are small sets of long changes which are
almost identical. Accidentally matching, long changes are

49

less likely when a high threshold value is used. Therefore
the changes which are identified as (frequently) recurring
changes are related to each other by a copy relation. As we
observed in the initial study, there are three possible causes
for such relation to exist:

• A first reason is the introduction of duplicated code.
Based on former experience, the maintainer applies a
previously used solution in a different location. In our
study, we for example noticed how the same excep-
tion handling code was introduced in different places.
However, the maintainers were aware of the problems
related to duplicating code since a few versions later,
the duplicated statements were replaced by a function.

• Repositioning a code fragment is a second cause for
the introduction of copy related changes. Moving code
from one class to another results in deleting and adding
the same piece of code at various locations. In our
study, we for example observed how an utility function
of RequestUtil was moved into the Parameter class.

• Temporarily adding a code fragment, is the last cause
we observed. We noticed how many of the fragments
added in one version, are deleted later, causing a copy
relation between the addition and delete. As figure 1
illustrates, many similarities between add and delete
changes exist.

Figure 1. As each dot in the plot corresponds
to a similarity between an add and a delete
change of at least 40 tokens, it illustrates the
relation between both categories

High threshold values therefore allow the identification
of recurring, product specific changes. By establishing the
motivation behind these changes more general maintenance
conclusions can be derived. For example we might learn
why code is duplicated or when a temporary solution can
be suitable. Also note that we used a simple comparison
scheme, comparing any part of the delta, with any other
delta. A comparison scheme in which only the pre-change

code of delta’s is compared, would not find many of these
copy related changes. For high threshold values, it is there-
fore better to use a simple comparison scheme which just
compares anything.

Low threshold values on the other hand, lead to the iden-
tification of frequently applied, generic changes. Due to
the reduced impact of the threshold on accidental matches,
more changes which are only accidentally syntactically
identical, are detected. This leads to sets of frequently ap-
plied changes which correspond to low level code changes
as e.g. changing a function call or changing a variable. In
our case study, we for example had a set of package defini-
tion changes, while another set bundled an extensive set of
import statement changes. However before low threshold
detection can be used in practice, two problems should be
solved.

When no special precautions are taken, different kinds
of generic changes are identified as one frequently applied
change. Since clone detection only demands that the syntac-
tical structure of two fragments matches, changes sharing an
identical structure, yet differing in semantics, are wrongly
classified as identical changes. Figure 2 which serves as an
example, illustrates how renames of function calls and vari-
ables are structurally identical. This problem can be solved
by taking more specific change information into considera-
tion.

IDENTIFIER "." IDENTIFIER "()"

IDENTIFIER "." IDENTIFIER "()"

top.getPosition()top.getPosition()

top.getCoordinate() upperLeftCorner.getPosition()

Figure 2. This figure shows how two generic
changes can be identical from a syntactical
perspective. In this example, renaming a
function–call (left) and renaming a variable
(right) share the same structure (above), how-
ever differ semantically. In the syntactic rep-
resentation, non-terminals are quoted.

A similar problem was caused because many changes
contain similar sub-units which match with each other. In
our simple evaluation setting, all changes were added to
one text-file which was afterwards analyzed for the pres-
ence of similarities. However this allows a statement, part
of a larger change, to match a statement of an other change.
To avoid this problem, the comparison of changes has to be

50

done in a more intelligent way. Identical changes are then
no longer changes which just share a similarity, but changes
in which both the code before the change as the one after the
change are similar. In case of a low threshold detection pro-
cess, more care has to be taken when comparing changes.
The frequently applied changes are however more generic
and can be used to automatically find generic maintenance
strategies.

4. Study of frequent changes

Finding frequently applied changes on itself does not
solve any maintenance issues. Each frequently applied
change is rather a building block to identify generic mainte-
nance strategies. Based on the kind of sets formed, different
approaches can be taken.

Frequently applied changes identified with a high thresh-
old and are therefore specific to one product, can be used
as a starting point to study the motivation and success of a
change. Afterwards this study may be generalized in a (set
of) general rule. The motivation behind the removal of a
recently added code fragment in a product, may teach us
for example, why a change may fail in general. Similarly,
studying the duplication of a solution, may point us to gen-
eral problems or teach us how duplication grows, which in
turn allows us to improve design patterns to cope with this
duplication. However, due to their tight product coupling,
these high threshold FACs can be used to improve and un-
derstand the current product as well.

The generic FACs found with a low threshold on the
other hand, can be used to derive maintenance strategies
automatically. In such automatic process, FACs are used
as building blocks in a data mining process to identify fre-
quent change patterns. All changes, classified according
to their change set, are added to a kind of change trans-
action database. After composing such change database, a
data mining process searches for frequent change patterns.
However we can not just search all the changes for recur-
ring patterns since change strategies are composed of both
generic changes and relations between them. Therefore re-
lated changes, for example two changes which share an
identical code fragment or because one change introduces
a function used by the other, are considered as one change
transaction. By comparing these various change transac-
tions, recurring patterns are identified. These change pat-
terns allow us to find generic maintenance operations like
the refactorings that are currently described in literature [4].
By evaluating the situation in which these maintenance op-
erations are used, we also might identify when and why they
should be applied.

In turn, these maintenance operations can be considered
as frequently applied changes and used to identify even
higher level change strategies. One possibility is to rede-

fine the data mining process to these higher level FACs. In
this redefined process, a transaction groups all the change
patterns applied in one version. Change patterns identified
by such process may show us how a generic problem situ-
ation is removed by performing a sequence of lower level
maintenance operations. Software maintainers can use this
knowledge when handling a similar problem.

An other possibility is to relate changes with bug reports
as proposed by Fischer [3]. By combining this information,
frequently occurring bugs as well as their solutions may be
identified. Consider for example a case where many bug re-
ports are related to changes belonging to the “change loop
condition” FAC. This would empirically show that looping
conditions tend to lead to errors and therefore should be
thoroughly tested. Similarly changes could be linked with
maintenance reports or feature requests, to identify requests
with similar solutions. This would not only allow main-
tainers to apply requests faster, but also helps designers to
anticipate changes better.

Frequently applied changes, allow us to start with a set of
small, generic changes and incrementally build up a whole
set of maintenance operations which enrich our current soft-
ware maintenance knowledge with wide-spread operations
and techniques.

5. Future Directions

In the immediate future, we want to further explore the
technique, introduced in this paper. This includes further
evaluation of the suitability of various clone detection tech-
niques and clone detection in general. For example, we
want to study how the low threshold related problems (3.2)
can be reduced or even removed.

Next to improving the technique through evaluation, we
will apply it to study software evolution. In this context, we
plan to evaluate the techniques and ideas presented in sec-
tion 4. By means of these techniques, we want to investigate
various projects to come to general maintenance strategies.

6. Related Work

To our knowledge, little effort has been spent to com-
pose sets of frequently occurring changes and use those to
study software maintenance. One could argue that a runtime
change classification scheme as the one by Gustavsson [5],
fits this context too since the items in such classification
correspond to sets of changes. However FACs work on dif-
ferent levels and work from an exploratory perspective. Fur-
thermore, the technique allows to automatically categorize
changes based on any classification scheme.

In the context of studying changes, work has been done
to identify the motivation for a change [12]. The goal was

51

verifying whether a change was made to fix a problem,
prepare for future change or to insert new user function-
ality. Related with this work, Mockus used word frequency
analysis of log messages to not only identify the purpose
of changes, but relate it to change size and time between
changes as well. Mockus and De Hondt, who both studied
change log information, state that a textual description of
a change is necessary to understand the real motivation be-
hind a change [10, 6]. Our technique, does not differ from
this point of view. Change information should be linked
with other maintenance information to fully understand the
motivation behind these strategies.

Concerning the detection of patterns using data mining,
there is some relation to Michail [9] who detects reuse pat-
terns based on a data mining approach. We propose a sim-
ilar approach to detect change patterns over different ver-
sions.

References

[1] B. S. Baker. Parameterized duplication in strings: Algo-
rithms and an application to software maintenance. SIAM J.
Computing, 26(5):1343–1362, October 1997.

[2] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In H. Yang
and L. White, editors, Proceedings of Int. Conf. on Software
Maintenance (ICSM), pages 109–118. IEEE Computer So-
ciety, September 1999.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings Int. Conf. on Software Maintenance
(ICSM), pages 23–32. IEEE Computer Society, September
2003.

[4] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[5] J. Gustavsson. A classification of unanticipated runtime
software changes in java. In Proceedings Int. Conf. on Soft-
ware Maintenance (ICSM), pages 4–12. IEEE Computer So-
ciety, September 2003.

[6] K. D. Hondt and P. Steyaert. Exploiting classification for
software evolution. In ECOOP 2000 Workshop on Objects
and Classification, 2000.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A
multi-linguistic token-based code clone detectionsystem for
large scale source code. IEEE Trans. Software Engineering,
28(7):654–670, July 2002.

[8] M. M. Lehman and L. A. Belady. Program evolution: pro-
cesses of software change. Academic Press Professional,
Inc., 1985.

[9] A. Michail. Data mining library reuse patterns using gen-
eralized association rules. In Proceedings of the 22nd Int.
Conf. on Software Engineering, pages 167–176. ACM Press,
2000.

[10] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proceedings Int. Conf.
on Software Maintenance (ICSM), pages 120–130. IEEE
Computer Society, October 2000.

[11] F. V. Rysselberghe and S. Demeyer. Reconstruction of
successful software evolution using clone detection. In
M. W. G. Tommi Mikkonen and M. Saeki, editors, Proceed-
ings Int. Workshop on principles of software evolution (IW-
PSE), pages 126–130. IEEE Computer Society, September
2003.

[12] E. B. Swanson. The dimensions of maintenance. In Pro-
ceedings of the 2nd Conf. On Software Engineering, pages
492–497, 1976.

52

Mining the Software Change Repository of a Legacy Telephony System

Jelber Sayyad Shirabad, Timothy C. Lethbridge, Stan Matwin

School of Information Technology and Engineering

University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada

{jsayyad,tcl,stan}@site.uottawa.ca)

Abstract

Ability to predict whether a change in one file may

require a change in another can be extremely helpful to a

software maintainer. Software change repositories store
historic changes applied to a software system. They

therefore inherently contain a wealth of information

regarding (hidden) interactions between different
components of the system, including the files that have

changed together in the past. Data mining techniques can

be employed to learn from this software change
experience. We will report on our research into mining

the software change repository of a legacy system to learn

a relation that maps file pairs to a value indicating
whether changing one may require a change in the other.

1. Introduction
1

In large software systems there are many unknown or

undocumented relationships and interactions between dif-

ferent components of the system. Such undocumented

relationships are major sources of complexity and cost for

maintaining the system.

Source code management systems, along with error

tracking and change repositories maintain a

comprehensive change history of a system. They

inherently store a wealth of information regarding many

of the interactions and relationships among different

components of the system. Data mining methods convert

data containing past experience with a given process into

the knowledge about this process. Therefore, source code

management systems are a fertile area of application for

data mining. The idea here is to learn relationships among

software entities from the historic change records.

In Section 2 of this paper we present the notion of

Relevance Relations among entities in a system. Section 3

shows how the problem of learning a relevance relation

can be mapped to a classification learning problem, while

Section 4 describes the measures used to evaluate the

1
Due to the space limitation the discussion of related work has been

kept to a minimum.

quality of the learned classifiers.

As a proof of concept we will learn a relevance relation

between file pairs in a legacy system. This relation maps a

pair of files to a value indicating whether changing one

may require a change in the other. Such a relation can be

very helpful to a software maintainer.

To learn this relation we will mine the change reposi-

tory of our subject legacy system. Sections 5 to 7 provide

the details of this process as well as some of the results.

The conclusion and future work is presented in section 8.

2. Relevance Among Software Entities

In this section we provide the definitions of Relevance

Relation and other concepts closely related to it. We will

also discuss a specific example of such relations in the

context of software maintenance.

2.1 Relevance Relations

Definition: A Software Entity is any semantically or

syntactically valid construct in a software system that can

be seen as a unit with a well defined purpose2..

Examples of software entities include documents,

source files, routines, modules, variables etc.

Definition: A Predictor is a relation that maps tuples

of one or more software entities to corresponding values

reflecting a prediction made about the elements of the

tuples.

Definition: A Relevance Relation (RR) is a predictor

that maps tuples of two or more software entities to a

value r quantifying how Relevant i.e. connected or related,

the entities are to each other. In other words r shows the

strength of relevance among the entities. Therefore,

“Relevant” here is embedded in, and dependent on, the

definition of the relation.

For instance, in section 2.2 we will discuss a relevance

relation called co-update that maps file pair tuples to one

of two relevance values Relevant or Not-Relevant.

The relevance value r can be a number between 0 (lack

of any relevance) and 1 (100% relevant), in which case the

2
 Unless otherwise stated, in this paper an entity means a software entity.

53

relevance relation is continuous, or it can be one of a set

of predefined values, in which case the relevance relation

is discrete.

2.2 A real world example of Relevance Relations

When a maintenance programmer is looking at a piece

of code, such as a file or a routine, one of the important

questions that she needs to answer is:

"which other files should I know about, i.e. what other

files might be relevant to this piece of code ?".
Knowing the answer to this question is essential in

understanding and maintaining any software system

regardless of the type of maintenance activity.

In this paper we will therefore focus on a special kind

of relevance relation where the entities are files. We want

to learn a special class of Maintenance Relevance

Relations (MRR) called the co update relation:

co-update(fi, fj) →{Relevant, Not-Relevant} where,

i ≠ j and fi and fj are any two files in the system.

co-update(fi, fj) → Relevant means that a change in fi

may result in a change in fj, and vice versa .

As it can be seen in this definition, the co-update rela-

tion is a discrete relevance relation mapping two entities

(files in this case) to one of the two relevance values.

A relevance relation such as co-update could be used to

assist a maintenance programmer in answering the above

question about files.

3. Relevance Relations and classification

learning

While in most cases one can easily specify the behavior

of a relevance relation in terms of its domain and range,

the actual definition of the relation is unknown. It is also

the case that one could provide instances of the relation of

interest, without knowing an exact definition for it. For

instance by looking at a software change repository we

can find past instances of the co-update relation, without

knowing the definition of the relation itself. If we knew

the definition, we could use it to predict whether for any

pair of files in the system a change in one may require a

change in another, even if we do not have a record of them

being changed together in the past. Therefore, it is natural

for one to try to learn from these instances.

The problem of learning a relevance relation can be

directly mapped to a classification learning problem. Here

the classifier represents the learned relevance relation. In

classification learning terminology we are trying to learn a

concept e.g. the co-update relation between files. Figure 1

shows the relation between a relevance relation and a

classifier modeling it.

To learn a concept such as the co-update relation, an

induction algorithm must be provided with pre-labeled

(pre-classified) examples or cases of that concept. The

example consists of the description of the concept and an

assigned class or label. An example is described by

calculating the value of a list of predefined attributes or

features. The features of an example must describe the

entities in the corresponding tuple which is mapped by the

relevance relation. For instance an attribute could be the

file type of the first file in a co-update tuple with possible

values “source” and “header”. Another attribute could be

the number of routines called by both files in the tuple. In

the first case the attribute is based on one of the entities in

the tuple, while in the latter case the attribute is based on

two entities.

Actual Relevance Value r

Tuple of

entities

Relevance Relation R

Case (a1, a2, a3, a4, …, aN)

Classified as r’Classified as r’

(ei, ej, …, ez)

Classifier/Model

Figure 1. The Mapping between a Relevance
Relation and a Classifier

The output of the induction algorithm is a classifier

which will model the relevance relation of interest. As

Figure 1 suggests, once a model is learned a previously

unseen tuple of entities (ei, ei,…, , ez) can be translated to

a case with feature or attribute values (a1, a2,…, , aN), and

input to the learned model. The output of the model r’ is

an approximation of the actual relevance value r 3. A

classifier that always correctly classifies the given cases,

accurately represents the corresponding relevance relation.

However, this is hardly ever the case in a real world

setting. In Section 4 we will discuss how we can measure

the performance of generated classifiers or models.

Due to software engineers’ time restrictions it is not

always practical to ask them to provide instances of the

co-update relation, therefore we used heuristics instead.

We extract from the software change repository all the

updates applied to the system within the time period for

which the data will be mined. The Co-update heuristic
suggests that files changed together by each update be

paired and label as Relevant.

The Not-Relevant heuristic labels a pair of files as

Not-Relevant if these files are not changed by any updates

within the time period used for mining

If T=[T1,T2] is the period of time to which the Co-

update heuristic was applied, T’=[T3,T2] the period of time

to which the Not Relevant heuristic is applied includes T

i.e., T3 ≤ T1

Our methodology allows the set of Not-Relevant tuples

3
Here we emphasize that any relevance relation can be modeled by a

classifier learned from the instances of that relation. For the special case

of suggesting software entities that tend to change together one could

also employ other techniques such as association rule learning as

discussed in [5].

54

be further refined, if there is additional information, e.g.

expert feedback, suggesting a tuple should not be labeled

as Not-Relevant.

4. Measuring classifier performance

Figure 2 shows a confusion matrix, where the counts of

predicted versus actual class of examples used for

evaluating a model are tabulated. The following measures

can be derived from this matrix.
Classified As

 Relevant Not-Relevant

Relevant a b True Class
Not-Relevant c d

Figure 2. A confusion matrix

TPR=
casesRelevantofNumber

classifiedcorrectlycasesRelevant
=

ba

a

+

FPR=
casesRelevantNotofNumber

classifiedyincorrectlcasesRelevant-Not
=

dc

c

+

Ec=
dcCbCa

cCbC

NPPN

NPPN

+++

+

**

**

In our research we consider the Relevant class to be the

positive class and the Not-Relevant class the negative

class. TPR and FPR are the True Positive and the False
Positive rates for the Relevant class. Readers familiar with

the Recall measure will recognize that it is the same as

true positive rate. Ec is the Cost Sensitive Error Rate. It

generalizes the formula for Error Rate by allowing arbi-

trary cost factors to be assigned to each of the two possi-

ble misclassifications. CNP is the cost factor for misclassi-

fying negative examples e.g. Not-Relevant as positive.

CPN is the cost factor for misclassifying positive examples

e.g. Relevant, as negative. When the costs for both kinds

of errors are set to one, this formula simplifies to the for-

mula for error rate.

All three measures above are normalized. Ideally we

would like to have a classifier with a true positive rate of

1, and the false positive and error rates of 0.

5. Attributes used in our experiments

To learn the co-update relation, we have experimented

with different sets of attributes. These attribute sets can be

divided into two groups:

• Syntactic attributes

• Text based attributes

Syntactic attributes are based on syntactic constructs in

the source code such as function calls, variable definitions

or type definitions. These attributes are extracted by static

analysis of the source code4. They also include attributes

4Computing the value of some of these attributes involves steps similar

to the ones taken to measure well known static software product metrics

such as fan in, fan out, and cyclomatic complexity.

based on names given to files. Interested readers can find

the complete list of these attributes in [4].

Text-based attributes allow us to exploit another source

of knowledge about the files modified together: the text of

comments and problem reports. Each file is represented by

a vector of features that correspond to the words found in

the collection of all comments or all problem reports.

Such a “bag of words” is a commonly used representation

method for documents in information retrieval and

machine learning. The Boolean bag of words

representation sets a feature to true if the corresponding

word exists in the document and false otherwise.

We have adapted this representation to accommodate

file pair tuples as is the case for the co-update relation.

After assigning a bag of word feature vector to each file,

we create an example for tuple (fi, fj, r) by creating a new

bag of words feature vector which is the intersection (or

logical AND) of the feature vectors corresponding to fi

and fj. Therefore, in the new file pair feature vector a

feature is set to true if the corresponding word appeared in

the sets of words assigned to both fi and fi, otherwise the

feature is set to false. The idea here is to find similarities

between the two files. Of course the example will be

labeled as r e.g. Relevant or Not-Relevant.

We have created bag of word feature vectors for files

using:

• Source code comments

• Problem reports

In the first case a program file is seen as a document,

i.e. assigned a set of words, consisting of the words in its

comments.

In the case of problem reports the words in problem

reports must somehow be associated with program files.

This is achieved by creating a set of words for each file

consisting of the words in all problem reports that caused

it to change.

6. Experimental setup

The subject for our experiments was a large telephone

switching software system (a PBX) developed by Mitel

Networks corporation. This software was originally

created in 1983 and is still a major source of revenue for

our industrial partner. Approximately 1.9 millions lines of

high level language (HLL) and Assembler code were

distributed in about 4700 source files. The high level

language source files which are the subject of this report

constitute about 75% of these files.

In our research we used the source code and error

tracking and update data maintained in a system called

SMS. Using SMS one can view problem reports submitted

against the system and updates applied to fix them. By

applying the Co-update heuristic we extracted a set of file

pairs that were changed together by updates submitted in

the 1995 to 1999 time period, i.e. the set of Relevant file

55

pairs. Using the Not-Relevant heuristic mentioned earlier,

we found a set of file pairs that were not changed together

during this time period, i.e. the set of Not-Relevant file

pairs5.

The group size of an update is the number of files

changed by it. Experiments reported in this paper limit the

Relevant file pairs to the ones changed by updates where

the group size is at most 20. These updates constitute 93%

of updates with a group size larger than 1. Our

experiments have shown that limiting group size generate

better results than not doing so. We generate a new

Relevant tuple (and example) for each individual update

that change a pair of files together. Table 1 shows the

distribution of Relevant and Not Relevant examples used

in our experiments. We split these examples to 1/3

Training Repository and 2/3 Testing Repository.

Table 1. Class distributions

Relevant Not Relevant #Relevant/#Not Relevant

All 4547 1226827 0.00371

Training 3031 817884 0.00371

Testing 1516 408943 0.00371

As discussed above for each instance of the co-update

relation we generate an example by calculating the value

for a set of predefined attributes. We use the relevance

value of the instance as example’s label e.g., Relevant.

Table 1 shows that the number of Not-Relevant

examples is about 270 times the number of Relevant

examples. This imbalance creates difficulties for most

learning algorithms as they are designed to select models

with higher accuracy. In this skewed scenario a classifier

that classifies every example as Not-Relevant will have a

very high accuracy, yet it will be completely useless. To

compensate for this, we train our classifiers on far less

skewed data sets. These training sets include all the

Relevant examples and a sampled subset of Not-Relevant

examples in the training repository so that thy will have

the following Not-Relevant/Relevant ratios:

1-10,15,20,25,30,35,40,45,50

In other words we learn from 18 training sets with the

above skewness ratios and test on the complete testing

repository that has the original skewness among classes.

In the reminder of this paper any reference to a “ratio N

classifier” means a classifier that is trained on a training

set with a skewness ratio N.

The learning system used in our experiments is C5.06,

an advanced version of the C4.5 decision tree learner [3].

Decision tree learning is one of most widely used and well

5
To further restrict the size of this set the first file in a Not-Relevant pair

must also appear as the first file in a Relevant file pair.
6

We have also experimented with a simple learning algorithm called 1R

[1] and Set Covering Machines (SCM) [2].The unsatisfactory, 1R results

shows the complexity of the data. Results obtained for SCM were not

significantly better than the ones obtained with C5.0.

researched areas of machine learning. A decision tree is an

explainable model that can be studied and reasoned about

by domain experts.

7. Comparing models learned from syntactic and

text based features

We have learned models of the co-update relevance

relation by conducting three sets of experiments using the

17 syntactic feature set, the source file comment feature

set, and the problem report feature set. Each set of

experiments generated 18 classifiers corresponding to the

above training skewness ratios. For each set of

experiments we plotted TPR of each classifier against its

FPR. This plot is known as the ROC plot. Figure 3 shows

the ROC plot generated from these experiments7. In an

ROC plot the ideal point is (1, 0) where the true positive

rate is at its maximum and the false positive rate is at its

minimum. A classifier that is on the north-west side of

another classifier on the plot, i.e. closer to point (1, 0), is

said to be the dominant one.. In the ROC plots shown in

this paper the rightmost point corresponds to a classifier

learned from a balanced training set, while the leftmost

point corresponds to ratio 50 classifier.

As Figure 3 shows the text based attributes generate

models that dominate the classifiers generated from

syntactic features. The problem report based features

generated the best models. Increasing the number of

Not-Relevant examples in the training set causes a drop in

TPR and FPR. The drop in TPR, which is the undesirable

effect, is far less in the case of classifiers learned from

problem report based features. A closer look at the ratio

50 problem report based classifier revealed that it achieves

a precision of 62% and a recall of 86% for the Relevant

class. We believe performance values such as these makes

a classifier a good candidate for field deployment.

We also combined text based features used in the clas-

sifiers of Figure 3 with syntactic features and repeated our

experiments using these combined feature sets. As can be

seen in Figures 4 and 5 the classifiers generated from the

combined feature sets in most cases dominate the original

text based classifiers. The effects are more prominent in

the case of source file comment based classifiers, however

this should not be very surprising as the problem report

based classifiers already show fairly high quality.

Finally, Figure 6 shows the cost sensitive error rate

plots for the ratio 50 text based classifiers and two random

classifiers used as comparison baselines. In a two class

classification problem, a common baseline is a random

classifier with a probability of 50% for each class.

However since the distribution of our classes is skewed

we have also used a classifier with the same skewness as

the testing repository. Examples in the testing repository

7 The axes in these plots are scaled between 0 and 100.

56

are randomly classified, with the desired probabilities, by

these classifiers. To better account for the variation in the

randomness, we create one accumulative confusion matrix

for each classifier by repeating this 10 times. Figure 6

shows that increasing cost factors CNP.and CPN both

increase the cost sensitive error rate, however text based

classifiers perform better than both base random

classifiers. The problem report based classifier generated

the best cost sensitive error rates.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

False Positive Rate (%)

1

50

Syntactic
File Comments

File Problem Report Words

Figure 3. Comparing syntactic and text based
features

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 0 2 4 6

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

False Positive Rate (%)

File Problem Report Words
Juxtaposition of Syntactic and Used Problem Report Words

Figure 5. Combining syntactic and problem report
features

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 2 4 6 8 10 12 14

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

False Positive Rate (%)

1

50
Juxtaposition of Syntactic and Used Comment Words

Comment Words
Syntactic

Figure 4. Combining syntactic and source file
comment features

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

Problem Report
Random Full Skewed

Random 50/50
Source Commens

 10 20 30 40 50 60 70 80 90 100False Positive cost 10 20 30 40 50 60 70 80 90 100

False Negative cost

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 6. Cost sensitive error rate plots

8. Conclusion and future work

In this paper we presented the notion of Relevance

Relation to represent relations among entities in a soft-

ware system. We showed how classification learning can

be used to model relevance relations. As a case study we

set out to learn models for the co-update relevance rela-

tion between pairs of files in a large legacy system.

We presented results obtained from syntactic and text

based feature sets, and their combinations. Our results

show one can learn models with performance values that

merit their practical use. We further analyzed these

models under different misclassification cost assignments

to evaluate their quality. The problem report based models

generate some of the lowest cost sensitive error rates even

in the presence of high misclassification costs. In the

future we intend to experiment with other feature sets, and

learn other relevance relations in software systems. We

also plan to deploy the learned classifiers and evaluate

their performance in the field.

References

[1] Holte R.C. 1993. Very Simple Classification Rules Perform

Well on Most Commonly Used Datasets. Machine Learning,

Vol. 3 pp. 63 91

[2] Marchand M. and Shawe-Taylor J. 2002, The Set Covering

Machine, JMLR, Vol. 3, pp. 723 745

[3].Quinlan J.R. 1993. C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers, Pat Langley, Series Editor

[4] Sayyad Shirabad J., Lethbridge T.C. and Matwin, S. 2003.

Mining the Maintenance History of a Legacy Software Sys-

tem. Proceedings of the 19th ICSM, pp. 95-104.

[5] Zimmermann T., Weißgerber P., Diehl S., and Zeller A.

2004. Mining Version Histories to Guide Software Changes.

Proceedings of 26th ICSE. (To appear).

57

Four Interesting Ways in Which History Can Teach Us About Software

Michael Godfrey Xinyi Dong Cory Kapser Lijie Zou

Software Architecture Group (SWAG)
School of Computer Science

University of Waterloo
Waterloo, Ontario, CANADA

email: {migod,xdong,cjkapser,lzou}@uwaterloo.ca

Abstract

In this position paper, we outline four kinds of studies
that we have undertaken in trying to understand various as-
pects of a software system’s evolutionary history. In each
instance, the studies have involved detailed examination of
real software systems based on “facts” extracted from var-
ious kinds of source artifact repositories, as well as the de-
velopment of accompanying tools to aid in the extraction,
abstraction, and comprehension processes. We briefly dis-
cuss the goals, results, and methodology of each approach.

1. Introduction

This position paper describes four broad approaches to
studying software system evolution that yield different per-
spectives on how and why a system has evolved. These
approaches are:

• coarsely-grained longitudinal case studies of growth
and evolution,

• finely-grained case studies of origin analysis between
consecutive versions of a system,

• case studies of code cloning within families of related
systems, and

• tracking how build architectures and software
manufacturing-related artifacts change over time.

Each of the above approaches involves three basic steps:

1. extraction of raw “facts” from various kinds of source
artifact repositories,

2. automated, semi-automated, and manual analysis tech-
niques performed on the facts, and

3. tool-supported exploration, navigation, and visualiza-
tion to aid in comprehension.

We note that there is sufficient space in this position
paper only to outline our results and methodologies. The
reader is referred to listed references for more details.

2. Longitudinal case studies of growth

2.1. Goals and Results

Previously, we have studied growth and evolution of sev-
eral open source software systems, including the Linux op-
erating system [2]. Our original goal was to track how the
growth patterns of large open source systems compared to
previous studies on (non-open source) industrial systems;
in particular, we wished to determine if Lehman’s Laws
of Evolution [8], which had been derived based on stud-
ies of (closed source) industrial software systems, also held
for open source systems. We found that they did not hold
in several instances; perhaps the most surprising result was
that the Linux kernel continued to grow at a geometric rate
even after surpassing two million lines of code (2 MLOC)
(Fig.1). Lehman’s empirical model predicts slowing growth
as a software system becomes “large”.1

2.2. Methodology

For these studies, we analyzed the source code of the
Linux operating system in a semi-automated manner. This
involved manually downloading and unpacking 96 versions
of the kernel source code “tarball”, running a set of hand-
crafted bash and awk scripts over them to measure their

1Lehman has personally acknowledged that this study does indeed con-
tradict some of his laws, and has said that he will need to reformulate them
to take into account the various phenomena of open source software devel-
opment.

58

Figure 1. Growth of the compressed tar file
distribution for the Linux kernel source re-
lease; measuring size as lines-of-code, num-
ber of modules, etc.showed roughly the same
geometric growth pattern [2].

size in various ways and at various levels of abstraction, and
then analyzing and exploring the results within a spread-
sheet.

At the time the study was done, we did not have access to
(or know of) a “live” CVS repository that could have aided
in automating the analysis tasks. The size of the Linux ker-
nel source itself (over 2 MLOC) and its relative fragility
(it can be difficult to configure, build, and compile in an
automated way) limited the amount and kinds of analysis
we were able to perform. Its fragility meant that we could
not reliably use our preferred static analysis tools to get a
more sophisticated understanding of its complexity, and its
size meant that we could not easily store more than a few
unpacked kernels at a time on the file system. Effectively,
we “boiled the ocean” of source code down to sets of num-
bers that could be stored inside a few spreadsheets, and used
those as the basis for our analysis.

3. Case studies of Origin Analysis

3.1. Goals and Results

A particular problem for program comprehension is ac-
curately modelling the ontology of a system’s components.
That is, the identity of a component is often equated with
the name of the containing file or programming language
entity (possibly together with its location within, say, a di-
rectory hierarchy). If a component is renamed or moved,
it is considered that the old component has died and a new
one has been born. However, as a system is redesigned and
refactored over time, it is fairly common for components to
be renamed, moved to another container, and merged into
or split from other components. While the name/location-
based identity assumption has the advantages of being sim-
ple and easy to implement in a tool, a lot of useful knowl-

edge about the system can be lost if the system has under-
gone internal change and refactoring.

We have therefore sought to develop a set of techniques
for performing what we call origin analysis, as well as a
supporting tool called Beagle [11, 12]. That is, when con-
fronted with a set of programming language entities that ap-
pear to be new to a particular version of a software system,
we try to determine which of these components really are
new and which are in fact derived from entities in the previ-
ous version of the system.

Origin analysis continues to be an ongoing area of re-
search for us, but we have already performed two detailed
case studies. The first explored the incidence of moving and
renaming of functions within the GCC compiler suite [11];
Table 1 shows the results of applying origin analysis of the
parser subsystem of version 1.0 of the EGCS variant of
GCC. This subsystem does not exist in the previous evolu-
tionary ancestor (GCC version 2.7.2.3), yet we were able
to determine that approximately 46% of the 848 functions
originated from various places within the ancestor. The sec-
ond case study, which is not detailed here, examined the
incidence of merging and splitting in the PostgreSQL rela-
tional database [12].

File # Func # New # Old Overall
c-aux-info.c 9 0 9 Mostly Old
fold-const.c 44 15 29 Mostly Old

objc/objc-act.c 167 17 150 Mostly Old
c-lang.c 16 14 2 Mostly New

cp/decl2.c 57 50 7 Mostly New
cp/errfn.c 9 9 0 Mostly New
cp/except.c 25 20 5 Mostly New
cp/method.c 30 26 4 Mostly New

cp/pt.c 59 57 2 Mostly New
except.c 55 52 3 Mostly New
c-decl.c 70 29 41 Half-Half

cp/class.c 61 31 30 Half-Half
cp/decl.c 134 84 50 Half-Half
cp/error.c 31 16 15 Half-Half
cp/search.c 81 40 41 Half-Half

Table 1. Summary of origin analysis results
for the (apparently) all new parser subsystem
of the EGCS 1.0 compiler relative to its imme-
diate evolutionary ancestor (GCC 2.7.2.3).

3.2. Methodology

Origin analysis is comprised of two basic techniques:
entity analysis and relationship analysis. Entity analysis,
which is similar to software clone detection, attempts to
match entities of the two system versions based on simi-
larity of the entities themselves. We have implemented this
as a metrics-based “fingerprint” [7]. A set of metric values
(e.g., cyclomatic complexity, fan-in/out) for functions are

59

precomputed on system check-in by the commercial tool
Understand for C++, and the results are stored in a rela-
tional database. At querying time, the candidates with the
closest Euclidean distance to the metric tuple of the target
entity are returned.

Relationship analysis is based on the assumption that if
an entity is moved or renamed, there is a high likelihood
that it will still engage in many of the same relationships
with the same entities as before (e.g., calls, called-by, inher-
its, uses-var). Various relations are extracted and recorded
at system check-in by the cppx fact extractor for C/C++
systems [9], and stored in a relational database. At query-
ing time, the candidates that have the most similar relational
images (e.g., call the same functions) are returned.2

Effectively, origin analysis reduces the source code down
to sets of numerical values and abstracted facts about the
software entities and their inter-relationships; we store this
information in a relational database, and use a graphical tool
to perform directed queries to help establish the most likely
“origin” of software entities that appear to be “new”.

4. Case studies of code cloning

4.1. Goals and Results

While algorithms and tools for code duplication detec-
tion (i.e., “clone detection”) have been well studied by the
research community, there has been relatively little inves-
tigation into what types of clones might exist and how of-
ten and in what context they occur within industrial soft-
ware systems. We feel that these questions are important
as they can help us to develop criteria to evaluate the effec-
tiveness of current detection techniques, and provide insight
into how these tools might be improved.

Recently, we performed a case study on the incidence of
code cloning within the file system component of the Linux
operating system [6]. Our initial goal was to investigate how
code duplication occurred in a well known industrial soft-
ware system, and we began to classify the types of clones
we found.

Our study led to several broad observations about
cloning within the candidate system, and to hypotheses
about cloning in general. For example, we found that files
that belonged to the same subsystem (in this case, a partic-
ular file system implementation, such as ext3) often had
many instances of cloning within them. Overall, we found
that 78% of clone-pairs occurred within the same subsys-
tem; this led us to hypothesize that some degree of system
structure might be determinable based on the clone relation-
ships. We also found that subsystems that share higher-
than-average amounts of code duplication between them

2Relationship analysis is also key to detecting merging and splitting,
but the details are more subtle [12].

were often in a relationship of one being derived from the
other, or the creation of one was heavily based on the other.
In Figure 2, we have labelled three points in the graph where
the subsystems were in such a relationship.

Figure 2. Number of clone pairs between file
systems (excluding themselves).

We also observed that clones that existed between files in
the same subsystem were usually function clones (accord-
ing to the definition in the next section), whereas clones be-
tween files in different subsystems were usually not func-
tion clones. This is another indication that information
about system structure may reside within the cloning rela-
tionship. We hypothesize that cloning activity may provide
strong clues about file relationships.

Finally, we found that clones between files of different
subsystems were often the “remains” of functions that had
been cloned, but had been changed substantially enough
that they could no longer be easily found as function clones.
This insight has led us to consider a new vein of investiga-
tion; we plan to use change data from CVS repositories to
profile how function clones change over time. Our analysis
will address discovering which developers tend to introduce
cloned code in a software system, who makes changes that
drive them to become different, and if bug fixes are consis-
tently made across all clone instances.

4.2. Methodology

To detect clones, we used both parameterized string
matching [5, 4] and metrics-based string matching [1].3

For brevity we will not describe these techniques here; the
reader is referred to the cited references. After the initial
extraction, we found that the tools returned a total of 5000

3We used the CCFinder tool to perform parameterized string matching
[5]; we implemented our own metrics-based tool, following the design of
others [1, 7].

60

clone pairs; of these, we determined through inspection that
1996 of these pairs were clearly false-positives and so were
removed.

In the study, we identified five types of clones: func-
tion clones, initialization clones, finalization clones, cloned
blocks, and cloned blocks within the same function. For
the first four clone types, we further subdivided each group
into clones in the same file, the same subsystem, and dif-
ferent subsystems. Function clones were functions where
a minimum of 60% of the code of each function was dupli-
cated between the two; a function clone can be composed of
several smaller clone pairs. Initialization clones are pieces
of source code at the beginning of a function that allocate
space for and initialize variables; these clones must start in
the first five lines of the function and end within the first
half of the function. Analogously, finalization clones are
pieces of source code which deallocate space and massage
data for returning; these clones must start in the last half of
the function and end in the last five lines of the function.
Cloned blocks of code are segments of code that do not fall
into any of the other types of clone

After categorization, and for any other empirical results
we have presented, we performed manual inspection of a
large percentage of the clone pairs in the given study to en-
sure that they were within the criteria that we specified and
that they were accurately found as clones.

5. Longitudinal case studies of software
manufacturing-related artifacts

5.1. Goals and Results

Software manufacturing — that is, the creation of soft-
ware deliverables from source artifacts — is an important
part of industrial software development. Large software
systems often have complex subparts that engage in subtle
relationships with the underlying technologies from which
they are built; consequently, many such systems have com-
plex and interesting architectural properties that can only be
understood in the context of the various phases of system
construction [10]. We consider that modelling and extract-
ing build-time architectural properties of such systems are
key to the software comprehension process, and so we have
begun studying characteristics of development and mainte-
nance activities that are related to software manufacturing
(SM).

Recently, we have begun a project to study the mainte-
nance effort of six open source projects4 from a software
manufacturing perspective (Table 2). We have attempted
to measure the maintenance effort of SM-related artifacts

4We note that one of the systems studied —Apache Ant —also hap-
pens to be a system building tool.

for each project along three dimensions: the authorship, the
size of the changes, and the frequency of the changes.

Project Period # fi les # CVS # authors Build tools
studied records used

from
midworld 05/2002 199 1,677 8 SCons
mycore 07/2001 343 2,116 12 Ant
Apache Ant 01/2000 1,791 28,888 32 Ant
kepler 08/2003 412 1,129 6 Ant + Make
PostgreSQL 07/1996 2,093 59,815 22 Make
GCC 08/1997 17,378 150,423 204 Make

Table 2. Case study project information.

The results of the study suggest that the development and
maintenance of SM-related artifacts is a significant activity
during software evolution. For example, we found over-
all that more than half of the project developers contributed
changes to the SM-related artifacts (Table 3). This may
indicate that changes to the source artifacts often require
changes to the SM-related files. In all but one of the systems
we studied, SM-related files changed much more than often
than the other kinds of source files. Overall, changes to the
SM-related files accounted for non-trivial percentages of to-
tal system changes, from 3–10% depending on the project.

Project # authors # authors who changed Percentage
SM artifacts

midworld 8 5 62.50%
mycore 12 7 58.33%
Apache Ant 32 26 81.25%
kepler 6 4 66.67%
PostgreSQL 22 15 68.18%
GCC 204 154 75.49%

Table 3. Author involvement in SM activities.

As more evidence of the significance of the evolution
of SM-related artifacts, we found several versions of sys-
tems where insertions and deletions of lines in SM-related
artifacts accounted for up to 30% of the total insertion and
deletion of lines in the system (Table 4).

Project LOC of SM fi les Changed LOC in SM fi les Peak
/ total LOC / total changed LOC

Apache Ant 0.70% 1.59% 11.92%
PostgreSQL 2.33% 3.70% 24.99%
GCC 4.64% 20.05% 30.24%

Table 4. LOC and changed LOC in SM files.

In an attempt to find causes of the changes to the build
system, we calculated the correlation of number of changes
to SM-related artifacts to the number of times the file count
changed. For half of our case studies, we found correlation
stronger than 0.7. We found that none of systems showed a
strong correlation to the size of the changes in SM-related
artifacts and change in file counts.

61

5.2. Methodology

For our study, we chose six open source software sys-
tems that used CVS as their versioning system. This al-
lowed us to analyze the CVS logs — particularly of those
artifacts that are related to SM — and perform statistical
analysis on the data. The first step was to separate the
SM-related artifacts from other source artifacts. The SM-
related artifacts includes configuration scripts and system
description files, such as Makefiles, Ant build.xml
files, and SConscripts. We considered each CVS “com-
mit” record to be one change, and the number of lines in
each CVS commit to be the size of the change. By exam-
ining the size and frequency of changes in SM-related arti-
facts and source artifacts, we are able to address questions
such as:

1. How much effort is put into SM-related artifacts?

2. What is the relation between evolution of SM-related
artifacts and evolution software system as a whole?

A paper detailing the results of this study is under devel-
opment.

6. Summary and challenges

This position paper has outlined four approaches to
studying software systems using historical data extracted
from various kinds of source artifacts. In each case, we per-
formed automated analysis of the artifacts, then used vari-
ous intermediate tools (such as grok [3], awk, and bash
scripts) to created abstracted views that can be explored,
navigated, and visualized for program comprehension pur-
poses.

We conclude by noting that performing evolutionary
studies of software systems presents several challenges that
must be addressed by researchers in the field:

• Scale — In our experience, existing analysis tools of-
ten function “at the bleeding edge” of what is practical
with respect to internal (and external) storage and pro-
cessing. A typical static analysis performed on a single
version of a system often produces voluminous detail
and is computationally intensive; performing the same
analysis across multiple versions of a system requires
that scale issues be addressed seriously.

• Automation — Again, in our experience many soft-
ware analysis tools require significant user interven-
tion to extract accurate facts. This problem is exac-
erbated over multiple versions, and as new problems
arise and have to be dealt with.

• Artifact linkage and analysis granularity — The
canonical version control repository system, CVS, typ-
ically stores only source code, which it treats as plain
text. A sophisticated tool for exploring software sys-
tem evolution requires easy access not only to the
“facts” and statistics about the source code that result
from the analysis tools, but also to the source code en-
tities themselves; CVS simply does not understand the
notion of “method” or “function” embedded within a
file.

References

[1] G. Antoniol, U. Villano, E. Merlo, , and M. D. Penta. Ana-
lyzing cloning evolution in the Linux kernel. In Information
and Software Technology 44(13), 2002.

[2] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In Proc. of 2000 Intl. Conference on
Software Maintenance (ICSM-00), San Jose, California, Oc-
tober 2000.

[3] R. C. Holt. An introduction to the Grok language. Avail-
able at http://plg.uwaterloo.ca/˜holt/papers/grok-intro.html,
2002.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. A token-based code
clone detection tool: CCFinder and its empirical evaluation.
Technical report, Osaka University, 2000.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. In Transactions on Software Engineering
8(7), pages 654–670. IEEE Computer Society Press, 2002.

[6] C. J. Kapser and M. W. Godfrey. Toward a taxonomy for
source code cloning: A case study. In Presented at First Intl.
Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA-03), Amsterdam, September 2003.

[7] K. Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Proc. of
1997 Working Conference on Reverse Engineering (WCRE-
97), Amsterdam, Netherlands, October 1997.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski. Metrics and laws of software evolution —The
nineties view. In Proc. of the Fourth Intl. Software Metrics
Symposium (Metrics-97), Albuquerque, NM, 1997.

[9] A. Malton and T. Dean. The CPPX homepage: A fact extrac-
tor for C++. Website. http://www.swag.uwaterloo.ca/˜cppx.

[10] Q. Tu and M. W. Godfrey. The build-time software archi-
tectural view. In Proc. of 2001 Intl. Conference on Software
Maintenance (ICSM-01), Florence, Italy, October 2001.

[11] Q. Tu and M. W. Godfrey. An integrated approach for study-
ing software architectural evolution. In Proc. of 2002 Intl.
Workshop on Program Comprehension (IWPC-02), Paris,
France, June 2002.

[12] L. Zou and M. W. Godfrey. Detecting merging and splitting
using origin analysis. In Proc. of 2003 Working Conference
on Reverse Engineering (WCRE-03), Victoria, BC, Novem-
ber 2003.

62

Predicting Source Code Changes by Mining Revision History

Annie T.T. Ying*+, Gail C. Murphy*, Raymond Ng*
Dep. of Computer Science, U. of British Columbia*

{aying,murphy,rng}@cs.ubc.ca

Mark C. Chu-Carroll+
IBM T.J. Watson Research Center+

mcc@watson.ibm.com

(Paper not included in proceedings per authors' request)

63

Mining Software Usage Data

Mohammad El-Ramly Eleni Stroulia
Department of Computer Science, Department of Computing Science,

University of Leicester, UK University of Alberta, Canada.
mer14@le.ac.uk stroulia@cs.ualberta.ca

Abstract

Many software systems collect or can be instrumented
to collect data about how users use them, i.e., system-user
interaction data. Such data can be of great value for
program understanding and reengineering purposes. In
this paper we demonstrate that sequential data mining
methods can be applied to discover interesting patterns of
user activities from system-user interaction traces. In
particular, we developed a process for discovering a
special type of sequential patterns, called interaction
patterns. These are sequences of events with noise, in the
form of spurious events that may occur anywhere in a
pattern instance. In our case studies, we applied
interaction pattern mining to systems with considerably
different forms of interaction: Web-based systems and
legacy systems. We used the discovered patterns for user
interface reengineering, and personalization. The method
is promising and generalizable to other systems with
different forms of interaction.

1. Introduction

An increasing amount of work is published on mining
software “development” data, i.e., data produced while
developing the software, e.g., CVS archives [16,17]. Also,
a lot of work was done by the dynamic analysis
community [9,10] on analyzing “runtime” data of software
systems, e.g., execution traces of object oriented systems,
etc. Little was done to mine software “usage” data, i.e.,
system-user interaction data collected while the system is
running. Usage data is rich of information on how the
system is currently used. This position paper makes a case
for mining usage data in support of reengineering, reverse
engineering and program understanding efforts.

Usage (or system-user interaction) data consists of
temporal sequences of events that took place while the
users were interacting with the system. We call such
sequences “interaction traces”. Typically, interaction
traces contain interesting patterns of user activities and of
the usage of system services in support of these activities.
We demonstrate that sequential data mining techniques

can be applied to discover these patterns. We used these
patterns for interaction reengineering, i.e., reengineering
the way the users interact with the system via user
interface (UI) reengineering and personalization. Also,
such patterns can be used for program comprehension,
requirements recovery and reverse engineering tasks.

To validate our argument, we developed a process for
mining interaction traces and successfully used it to mine
usage data of two types of software systems, with radically
different UI styles. The process retrieves a special type of
sequential patterns, called interaction patterns. An
interaction pattern is a frequently occurring sequence of
events that might include up to a certain level of noise in
each pattern instance, in the form of spurious events.
Noise events can occur anywhere in a pattern instance. A
pattern is considered interesting according to a user-
defined criterion that defines the minimum pattern length
and frequency and the maximum level of noise permitted.

We applied our “interaction pattern mining” process to
legacy and Web-based systems. In the first application, we
recovered the patterns of the frequent tasks done by the
users of a legacy system from traces of its users’ dialog
with the legacy UI, recorded while the users were doing
their regular jobs. These patterns model the currently
active and demanded services of the legacy system as
accessed via its UI. These service models are used for
reengineering the legacy UI and wrapping it with a Web
or WAP (Wireless Application Protocol) UI. In the
second application, interaction pattern mining was used to
discover the interesting navigation patterns in the Web
server logs of a focused Web site. A focused Web site
supports an ongoing evolving process and its users use it
in a consistent way, e.g., navigation activities of different
users during a period of time are more or less similar.
Examples of such sites are Web sites of university
courses. They evolve according to the course schedule and
students access them similarly, following to the course-
work progress. The discovered patterns can be used in
reengineering the Web site UI for faster and easier access.
This is done by giving online URL recommendations for
current users to make their navigation easier and faster, by
suggesting to them the consequent pages accessed by
enough recent users who had similar navigation history.

64

While more case studies are needed, these applications
demonstrate the applicability and value of the method and
suggest that generalization to other forms of sequential
system-user interaction and runtime data is straightforward.

In the following, Section 2 presents the “interaction
pattern mining” problem. Sections 3 and 4 describe two
applications of it. Section 5 is the summary and conclusion.

2. Interaction Pattern Mining

Mining sequences of data for recurring patterns is a
generic problem with instances in a range of domains that
are similar in that the data to be mined is represented by
sequences, but different in the type of patterns of interest
in each domain. Examples include sequential pattern
mining of retail industry data [1], discovery of frequent
episodes in event sequences [14], and discovering patterns
in DNA and protein sequences [4]. Many algorithms to
solve these problems emerged from data mining [1,2,3,14]
and bio-informatics [11,13] communities.

Interaction pattern mining is similar to other sequential
pattern mining problems in that the input data is ordered
sequences of event Ids (or URLs or protein labels, etc.),
but it is different in terms of the type of patterns sought.
This is because interaction pattern mining constrains the
maximum level of noise permitted in a pattern instance,
but does not care where the noise occurs. This gives
flexibility in discovering tasks that include user mistakes,
trivial events and/or alternative paths for some subtasks.

To formally define interaction pattern mining,
1. Let A be the alphabet of events.
2. Let S = {s1,s2,….,sn} be a set of sequences. Each

sequence si is an ordered set of Ids drawn from A and
represents a recorded trace of the runtime behavior of
the system under analysis, e.g., an interaction trace.

3. An episode e, is an ordered set of events occurring
together in a given sequence.

4. A pattern p is an ordered set of events that exists in
every episode e ∈ E, where E is a set of episodes of
interest according to some user-defined criterion c. E
and e are said to “support” p. The individual Ids in an
episode e or a pattern p are referred to using square
brackets, e.g., e[1] is the first Id of e. Also, |e| and |p|
are the number of items in e and p respectively.

5. If a set of episodes E supports a pattern p, then the first
and last Ids in p must be the first and last Ids of any
episode e ∈ E, respectively, and all Ids in p should
exist in the same order in e, but e may contain extra
Ids, i.e., |p| ≤ |e| ∀ e ∈ E. Formally,

• p[1] = e[1] ∀ e ∈ E,
• p[|p|] = e[|e|] ∀ e ∈ E, and
• ∀ pair of positive integers (i, j), where i ≤ |p|, j ≤ |p|

and i< j, ∃ e[k] = p[i] and e[l] = p[j] such that k< l.

The above predicate defines the class of patterns that
we are interested in, namely, approximate interaction
patterns with at most a predefined number of insertion
errors. For example, the episodes {2,4,3,4}, {2,4,3,2,4}
and {2,3,4} support the pattern {2,3,4} with at most 2
insertions per episode, which are shown in bold italic font.
6. An exact interaction pattern q is a pattern supported

by a set of episodes E such that none of its instances
has insertion errors

• q[i] = e[i] ∀ e ∈ E and 1 ≤ i ≤ |q|
7. The support of a pattern p, written as support (p), is

the number of episodes in S that support p.
8. A qualification criterion c, or simply criterion, is a

user defined quadruplet (minLen, minSupp, maxError,
minScore). Given a pattern p, the minimum length
minLen is a threshold for |p|. The minimum support
minSupp is a threshold for support (p). The maximum
error maxError is the maximum number of insertion
errors allowed in any episode e ∈ E. This implies that
|e| ≤ |p| + maxError ∀ e ∈ E. The minimum score
minScore is a threshold for the scoring function used
to rank the discovered patterns. A scoring function can
be defined depending on the application in hand and
the nature of the patterns sought.

9. A maximal pattern is a pattern that is not a sub-
pattern of any other pattern with the same support.

10. A qualified pattern is a pattern that meets the user-
defined criterion, c.
Given the above definitions, the problem of interaction

pattern mining can be formulated as follows:
Given: (a) an alphabet A,

(b) a set of sequences S, and
(c) a user criterion c

Find all the qualified maximal patterns in S.
Solving interaction pattern mining problems is a three

steps process. The first is a pre-processing step, needed
for cleansing the data in the input sequences, depending
on the problem in hand. In the second step, our novel
algorithm for interaction pattern mining, Interaction
Pattern Miner 2 (IPM2) [8], is applied to the cleansed
sequences to discover the patterns that meet a user-defined
criterion. The last step is the post processing analysis and
comprehension of the discovered patterns. The first and
third steps are application and data dependent.

3. Reengineering Legacy User Interfaces
Using Interaction Patterns

CelLEST project for semi-automated legacy system UI
reengineering [6,12,15] used interaction pattern mining as
part of a lightweight automated process for UI
reengineering of legacy systems that was designed to
automate the then non-automated technology of our

65

industrial partner Celcorp. [5] CelLEST adopts a semi-
automated task-centered lightweight process for wrapping
legacy UIs with Web or WAP UIs. The idea is to semi-
automatically understand and model the frequently used
legacy system services, represented by frequent patterns
of user activities. Then, new UIs for the desired platform
are generated automatically, that wrap these demanded
services. A significant innovation in the project is that the
new UI packages an entire legacy system service (or user
task) in the suitable UI on the target platform instead of
mimicking the legacy interface one by one. For example, a
system service that requires accessing 15 legacy screens
may be reengineered into one Web form instead of 15
Web pages and forms because this is the natural
representation of this task on the Web platform. Hence,
the method is described as “task-centered”. Service
models, which were built from the patterns, are used by
the new UI to invoke the legacy system services via the
legacy UI as if the new UI is a typical user of the legacy
system performing his or her tasks.

In this application, interaction pattern mining was used
to recover the frequent patterns of user activities while
using the legacy system. These patterns are buried in the
huge amount of data exchanged in dialog between the
users and the system via its UI. Mining the system-user
interaction traces with the legacy UI discovers these
patterns. The instances of each pattern are analyzed to
infer information about the type and location on the screen
of the user inputs. An analyst augments these patterns with
extra semantic information to build full-fledged models of
the frequent user tasks. Then, these models are
automatically translated to abstract UI specifications and
then to a UI implementation on the platform of choice:
XHTML-enabled (Extensible Hypertext Markup
Language) platforms or WAP devices. The automated
pattern discovery and analysis process replaced the earlier
time-consuming error-prone manual modeling process.

In CelLEST project, we used a host-access middleware
that serves as an emulator and recorder to access legacy
IBM 3270 systems. Unobtrusively through the
middleware, legacy system users can open a session with
the legacy application and do their regular jobs. The
middleware records their dialog with the system UI in the
form of sequences of legacy screen snapshots forwarded
to the user’ terminal, interleaved with the user actions in
response, in the form of keystrokes. Screens and snapshots

are like classes and objects; the later are instances of the
former. Analysis methods, including feature extraction,
clustering and others are used to derive a model of each
legacy screen from all its instances in the traces. This
model includes, for example, any distinguishing features
of the screen like a title or a certain visual distribution of
the screen content that occurs on all its recorded instances.
In this step, each screen is given a unique Id. So,
interaction traces can be abstracted by sequences of Ids as
Figure 1 shows. Figure 1 is part of a real interaction trace
taken from navigating a legacy library catalog system.
Numbers are screen Ids and arrows are user actions.

To explain what type of interaction patterns can be
found in these traces, Figure 1 shows two very similar
segments of the user dialog with the legacy library system
(in the dashed polygons) that occurred apart from each
other in the trace. These segments suggest that the user
was doing two similar runs of the same task, or
alternatively, s/he was using the same legacy system
service twice, although the two runs differ in the number
of snapshots of screens 6 and 9 accessed. In the actual
recorded trace, screen 4 displays the results of issuing a
browse command to browse the relevant part of the library
catalog file. Then, the user decides which items s/he
wanted to retrieve from the catalog by issuing a retrieve
command and s/he receives screen 5. Then, s/he displays
brief information about the items using display command
that displays screen 6. Finally, s/he selects an item using
the display item command to display its full or partial
information (screen 7). After selecting an option from
screen 7 (e.g., full details, summary, etc.), screens 8, 9 and
10 display the first, intermediate and last pages of the
required details, respectively. The number of snapshots of
screens 6 and 9 retrieved varies depending on the item
checked. The navigation segment of Figure 1 shows that
this task of item information retrieval was done twice.

We applied interaction pattern mining to recorded
system-user dialog traces of a number of systems [6]. To
further explain the expected outcome of this application,
we brief one of the experiments. In this experiment, we
collected 5 traces of user interaction with the IBM 3270
connection of a public library system. Each trace
represented a session of interaction between a user and the
library catalog, during which s/he retrieved information
about the library items of interest. The traces had 1657
screen snapshots in total and 27 screens (recall the classes

1 2 3 4 5 6 6 6 6 6 6 7 8 9

7 10 9 8 7 6 6 5 4 7 8 8 7 10

9

9

Figure 1. A Segment of a Trace of Interaction with a Legacy Library System

66

and object analogy). The segment of Figure 1 is taken
from one of the traces after identifying screens and
labelling snapshots with their screen Ids. The traces were
pre-processed and analyzed using IPM2 algorithm. Then
manually, an analyst post-processed the discovered
patterns by filtering out trivial patterns. Three patterns of
interaction with the library catalog were discovered;
each represents an information retrieval task,
corresponding to a service of the legacy system. Figure 2
shows one of the interaction patterns discovered, which is
{4+-5-6+-7+-8+-9*-10}. n+ means one or more snapshots of
screen n and n* means zero or more. The two dashed
polygons of Figure 1 represent instances of this pattern.
Further details of this experiment are in [6].

In CelLEST, these patterns were used for lightweight
UI reengineering. Each pattern was enriched with
semantic information and then translated to abstract user
interface specifications that are executable on multiple
platforms, e.g., XHTML-enabled platforms and WAP
devices [12]. Hence, a quick UI wrapper can be generated
semi-automatically for the legacy services of interest.
__

Use Case name: Retrieving Information on a Library item
Participating actor: Library System User
Entry condition: The user issues a browse command
Flow of events:

1- Flip the catalog pages until the relevant page.
2- Issue a retrieve command to construct a results-set for

the chosen catalog entry.
3- Display the results set using display command and

turn its pages until the required item is found.
4- Issue a display item command.
5- Specify a display option.
6- Display the item details.

Exit condition: The user retrieves the required
Information about the item s/he wants.
__

Figure 3. A Use Case Model Representation of The
Interaction Pattern of Figure 2.

Beyond CelLEST, the enriched patterns can be
represented in alternative formats to serve other reverse
engineering and reengineering purposes. For example, to
integrate the legacy system services with new object
oriented applications designed in UML, it could be useful
to translate the recovered interaction patterns to use cases
to integrate with new UML-based requirements. Figure 3
shows a use case representation of the pattern of Figure 2.
These patterns can also be used for re-documentation, and
requirement recovery tasks.

4. User Interface Reengineering of Focused
Web Sites Using Interaction Patterns

We used interaction pattern mining for Web-usage

behavior analysis of focused Web sites and proposed a
method for on-the-fly UI reengineering and personalization
of such sites. A focused web site supports an ongoing
evolving process and is usually navigated in a task-driven
as opposed to data-driven way. The users of the Web site
usually navigate it to accomplish the same task(s) during a
certain period of time. As the process evolves, they shift
together to other tasks. Models of these tasks, in the form
of interaction patterns, are buried in the Web server logs.

We used a Web site of a computer science university
course as an example of focused Web sites. The users of
this site usually do similar tasks related to their course
work every week, e.g., read and/or download new
materials, lab instructions and assignments and related
code, etc. Ideally, the discovered interaction patterns
correspond to the frequent user tasks of interest, not just
to interesting associations of Web pages. In other words,
the sequence of navigation matters. Since interaction
pattern mining tolerates noise, in the form of insertion
errors, it can discover patterns of sequential user
navigation with spurious navigation or slight differences.
These patterns can serve as basis for online URL
recommendations for current users to make their
navigation easier and faster, by suggesting to them the
further pages accessed by recent users who had similar

Item Details
Pg.

8

Brief
D isplay

6
Brief

D isplay

6Catalog
Browse

4
Catalog
Browse

4
C atalog
Browse

4 R etrieve
Results

5

Item Details
Last Page

10 Item Details
F irst Page

8

Brief
D isplay

6

Item Details
Intrm d.Pg.

8
Item Details

Interm ediate

9

Item Display
O ptions

7
Item D isplay

O ptions

7
Item D isplay

O ptions

7

Figure 2. A Diagrammatic Representation of The Pattern 4+-5-6+-7+-8+-9*-10, Corresponding to The
Information Retrieval Task Repeated Twice in The Trace Segment of Figure 1.

67

navigation sequences. Details of this application are in
[7], but highlights are briefed below.

Mining Web logs for interaction patterns is a three
steps process. First, preprocessing cleans and standardizes
the Web server logs and divides them into sessions. A
session is a coherent sequence of Web site navigation
activities of the same user. Then, IPM2 is applied to the
sequences of URL Ids representing sessions, with a user
defined interestingness criterion. Then, post-processing
depends on how the extracted patterns will be used.

We designed a method for Web UI reengineering and
personalization using these patterns, which generates
runtime recommendations for pages that new users of the
Web site may want to visit. A runtime infrastructure,
capable of user session tracking and relevant pattern
selection, is needed in this application. The HTTP protocol
is stateless and does not support establishing a long-term
connection between the Web server and the client’s
browser. To address this problem, dynamic page rewriting
with hidden fields can be used. When the user first
submits a request, the server returns the requested page
rewritten to include a hidden field with a session-specific
Id. Each subsequent request of the user to the server
supplies this Id to the server, enabling it to maintain the
user’s navigation history. This session-tracking method
does not require any information on the client side and can
therefore be employed, independent of any user-defined
browser settings. Since the server knows the user’s Id, it
can examine its recent navigation history to identify
whether it includes the prefix of any of the collected
patterns. If so, the suffixes of the relevant patterns are
offered as recommendations for subsequent navigation.
Then, page-rewriting technique can easily support the
dynamic adaptation of the pages requested by the users
with the recommendations on new potential places to visit.

5. Summary and Conclusions

This position paper demonstrated that applying data
mining to software usage data reveals valuable
information about the system in the form of sequential
patterns. Such patterns can be used for a variety of
reengineering, program understanding and reverse
engineering tasks. In particular, we presented a process
for discovering a type of sequential patterns, called
interaction patterns and two applications for it. The first is
discovering patterns of the frequent user tasks in the
recorded traces of system-user interaction with legacy
systems. These patterns are used for automated UI
reengineering. We also applied interaction pattern mining
to discover frequent user navigation patterns from server
logs of focused web sites. We proposed a method for
lightweight Web site runtime reengineering by introducing
on-the-fly URL recommendations based on these patterns.

Interaction pattern mining is a powerful technique for
analyzing usage data and can be extended to different
types of software runtime sequential data to discover
patterns of user and/or system activities.

References

[1] R. Agrawal and R. Srikant, Mining Sequential Patterns. In
Proc. of the 11th Int. Conf. on Data Engineering (ICDE),
pg. 3-14, 1995.

[2] R. Agrawal and R. Srikant, Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proc.
of the 5th Int. Conf. on Extending Database Technology
(EDBT), 1996.

[3] J. Baixeries, G. Casas and J. Balcazar, Frequent Sets,
Sequences, and Taxonomies: New, Efficient Algorithmic
Proposals. Report No. LSI-00-78-R, El departament de
Llenguatges i Sistemes Informàtics, Universitat Politècnica
de Catalunya, Spain, 2000.

[4] B. Brejova, C. DiMarco, T. Vinar, S. R. Hidalgo, G.
Holguin, and C. Patten, Finding Patterns in Biological
Sequences. Unpublished project report for CS798G,
University of Waterloo, Fall 2000.

[5] Celcorp, http://www.celcorp.com/
[6] M. El-Ramly, Reverse Engineering Legacy User Interfaces

Using Interaction Traces. Ph.D. Thesis, University of
Alberta, Canada, 2003.

[7] M. El-Ramly and E. Stroulia, Analysis of Web-Usage
Behavior for Focused Web Sites: A Case Study. J. of
Software Maintenance and Evolution: Research and
Practice, vol.16, no. 1-2, pg. 129-150, 2004.

[8] M. El-Ramly, E. Stroulia and P. Sorenson, Interaction-
Pattern Mining: Extracting Usage Scenarios from Run-time
Behavior Traces. In Proc. of the 8th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining (KDD
2002), 2002.

[9] ICSE Workshop on Dynamic Analysis, 2003.
[10] ICSE 2nd Int. Workshop on Dynamic Analysis, 2004.
[11] I. Jonassen, Methods for Finding Motifs in Sets of Related

Biosequences. Dr. Scient Thesis, Dept. of Informatics,
Univ. of Bergen, 1996.

[12] R. Kapoor, Device-Retargetable User Interface
Reengineering Using XML. Tech. Report TR01-11, Dept.
of Computing Science, Univ. of Alberta, 2001.

[13] A. Floratos, Pattern Discovery in Biology: Theory and
Applications. Ph.D. Thesis, Dept. of Computer Science,
New York Univ., 1999.

[14] H. Mannila, H. Toivonen and A. Verkamo, Discovery of
Frequent Episodes in Event Sequences. Data Mining and
Knowledge Discovery, vol.1, no. 3, pg. 259-289, 1997.

[15] E. Stroulia, M. El-Ramly, P. Iglinski and P. Sorenson, User
Interface Reverse Engineering in Support of Interface
Migration to the Web. Automated Software Engineering,
vol.3, no. 10, pg. 271-301, 2003.

[16] T. Ying, Predicting Source Code Changes by Mining
Revision History. M.Sc. Thesis, Dept. of Computer
Science, University of British Columbia, 2003.

[17] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
Mining Version Histories to Guide Software Changes. In
Proc. of Int. Conf. on Software Engineering (ICSE), 2004.

68

Defect Analysis

Bug Driven Bug Finders

Chadd C. Williams

Department of Computer Science

University of Maryland

chadd@cs.umd.edu

Jeffrey K. Hollingsworth

Department of Computer Science

University of Maryland

hollings@cs.umd.edu

Abstract

We describe a method of creating tools to find bugs in

software that is driven by the analysis of previously fixed

bugs. We present a study of bug databases and software

repositories that characterize commonly occurring types

of bugs. Based on the types of bugs that were commonly

reported and fixed in the code, we determine what types

of bug finding tools should be developed. We have

implemented one static checker, a return value usage

checker. Novel features of this checker include the use of

information from the software repository to try to

improve its false positive rate by identifying patterns that

have resulted in previous bug fixes.

1. Introduction

Static analysis of source code to locate bugs is a well-

researched area [3][9]. Static analysis has several well-

known benefits. Examining the source code without

actually executing the code makes the quality of test

suites, a hard problem, a moot point. Static analysis also

allows code to be tested that is difficult to run in all

environments, such as device drivers. There are a number

of systems that provide a means to write code snippets

that will be used to statically check code for one type of

bug or another [5][10].

It is easy for programmers to think about types of bugs

that might occur, and then devise a tool to look for these

bugs. However, the space of possible tools to build is

very large. Instead of creating solutions and looking for

bugs, we propose that efforts to build bug-finding tools

should start from an analysis of the occurrence of bugs in

real software, and then proceed to build tools to locate

these bugs. This paper describes a study of bug databases

and software repositories to determine what types of bugs

static checkers should be looking for by classifying the

types of bugs that are frequently reported and fixed in the

code.

2. Related Work

While previous work has tried to make general

predictions about faults and identify trends across the

software project from software repositories, our work is

concerned with specific bugs. We determine the types of

bug checkers that will be useful for a code base by

looking at the history of its development. We also feed

data mined from the revision history back into specific

bug detectors to make decisions on which flagged errors

are more likely to be true errors.

There are a large number of systems in use to statically

check source code for bugs. These systems have been

very successful in finding various types of bugs [2]. At

the very basic end of these systems are compilers that

perform type checking. A step beyond these are tools like

Lint that have a set of patterns to match against the code

to flag common types of programming errors [13].

Systems such as metal [6] allow the user to define what

type of patterns the static analysis checker should look for

via state machines that are applied to the source code.

Simple data flow analysis has also shown to be an

effective way to statically detect bugs [10].

While static checkers are effective at finding bugs,

they can produce a large number of false positives in their

results. Therefore, the ordering in which the results of a

static bug checker are presented may have a significant

impact on its usefulness. Checkers that have their false

positives scattered evenly throughout their results can

frustrate users by making true errors hard to find.

Previous work on better ordering of results has focused

on analyzing the code that contains the flagged error [11].

Unlike previous work, we will look at data collected over

the entire project and historical trends to rank our error

reports.

The historical data we use are mined from revision

histories stored in software repositories. Data from

software repositories has been used in a number of ways

to guide the software development process. The software

repository data has been used to identify high-risk areas

of the code based on change histories [4]. It has been

claimed that data based on change history is more useful

in predicting fault rates than metrics based on the code,

such as length [8]. Others have worked to identify

relationships between software modules by studying

which pieces of the source code are modified together

[7][14].

3. Mining Historical Data

The software development process produces a number

of artifacts as code is written and maintained. Chief

among them are bug databases and source code

70

repositories containing revision histories. We use both of

these artifacts to guide our research.

Table 1: Bugs Identified in the Bug Database

NULL pointer check 3

Return Value check 4

Logic Errors/Feature Request 34

Uninitialized Variable Errors 1

Error Branch Confusion 2

External Bugs (OS or other software failed) 2

System specific pattern 1

No identified code change 153

3.1 The Bug Database

To start our investigation, we reviewed the bug

database for the Apache web server, httpd[1]. We studied

the current branch of the software, which is version 2.0.

We looked at the first 200 bugs that were marked as

FIXED and CLOSED. We were interested in identifying

the types of bugs that were fixed and matching the bug

reports back to specific source code changes to classify

the fixed bugs.

Our search through the bug database produced a

number of interesting results. The bug reports in the bug

database rarely can be tied directly back to a source code

change. We were only able to tie 24% of the bug reports

marked as fixed directly back to a code change. While a

developer can post a comment detailing what code needed

to be changed, or denote which CVS commit was created

to resolve the bug, this is rarely done. Most bug reports

consist of a discussion between the reporter and a

developer. If the bug is fixed, the developer often ends

the bug report with a short comment that contains some

vague notion of where in the code the problem existed.

We have also seen cases where the developer will be very

specific and explain exactly what needed to be fixed or

attaches a diff, but these seem to be the exception. Table

1 contains a breakdown of the bugs we were able to

identify from the bug database.

The types of bugs we found in the bug database are

worth discussing. Most of the bugs we found were logic

errors or feature requests. Feature requests are just what

is expected, a new feature for the software or porting a

feature to a new platform. We categorize bugs where the

code is correctly written to do the wrong logic as logic

errors. These bugs can arise from the developer

misunderstanding the specifications or not understanding

how some web browsers act (in the specific case of

Apache's httpd). These bugs do not lend themselves to

being found via static checking. Bugs of this type are on

the order of implementing the incorrect function to

calculate a value, but doing the implemented calculation

correctly.

All but three of the bug reports we reviewed in the bug

database came from users outside the project. These

reports were mostly against a released version of the

software, rather than a random CVS dump of the source.

Only 2 of the bug reports were marked as being reported

against a CVS-HEAD version of the source code. This

leads us to believe that most of the simple "statically

found" bugs are taken care of by the developers before a

release is made. Hence, the users exercise few of these

bugs.

Table 2: Bugs identified in the Software Repository

NULL pointer check 28

Return Value Check 29

Uninitialized Variable Errors 3

Failure to set value of pointer parameter 1

Feature Request 1

Error caused by if conditional short circuiting 1

Loop iterator increment error 3

System specific pattern 3

3.2 The Software Repository

In order to understand what types of bugs are being

committed to the software repository, but not making it

into a release, we inspected commit messages in the CVS

repository. We looked for commit messages that

contained the strings 'fix', 'bug' or 'crash’ and did not have

a specific bug report listed. In this way we tried to weed

out as many of the bugs from the bug database as

possible. Moreover, we only looked at files that had a

larger number of commits to them, 50 or more. Table 2

shows the breakdown of the bugs we were able to identify

from the CVS repository.

The bugs found in the CVS repository were much

more amenable to identification by static analysis. While

a few continued to be the result of misunderstood

specifications or some other logic error, a significant

number were also of the kind easily found by static

analysis: a problem with the code, not with the algorithm.

The two most common types of bugs found in the CVS

commits were NULL pointer checks and misuse of

function return values. These two types of bugs

accounted for 57 of the bugs we identified in the CVS

commits.

4. Static Checker

Many of the bugs found in the CVS history are good

candidates for being detected by static analysis, especially

the NULL pointer check and the function return value

check. We chose to develop a return value checker based

on the knowledge that this type of bug has been fixed

many times in the past. Additionally, a return value

71

checker can easily take advantage of data in the CVS

repository to refine its results.

4.1 Return Value Checker

The return value checker we wrote checks to see if,

when a function returns a value, that value is tested before

being used. Using a return value can mean passing it as

an argument to a function, using it as part of a calculation,

dereferencing the value if it is a pointer or overwriting the

value. The need for checking the return value is intuitive

in C programs since the return value of a function often

may be either valid data or a special error code. For

example, in the case of returning a pointer the error code

is often NULL. This error code could cause problems if

the return value is dereferenced without being tested. If

an integer value is returned, often -1 or 0 is an error code

and these values should not be used in arithmetic. Even

though the idea of a return value checker is not new [13],

basing the return value checker on aggregate data and bug

fix histories makes our approach novel.

Our checker categorizes each error it finds into one of

several categories. Errors are flagged for return values

that are completely ignored; the return value is never

stored by the calling function. Errors are also flagged for

return values that are used in some manner before being

tested in a control flow statement. See Table 3 for the

complete list of categories of errors our checker reports.

4.2 Ranking

The key to our checker is the ranking system used to

present the output in a useful manner. Error reports are

grouped by the called function. A function is ranked by

how often its return value is tested before being used.

This is an aggregate number generated by running the

checker over all of the code in the current version of the

software and tracking, for each function, the number of

times the function is called and after how many of these

calls the return value is used improperly. An improper

usage of a return value is defined as either never storing

the return value in the calling function or using the return

value, as previously defined, before it is tested. We base

our ranking on the notion that while developers produce

bugs, they generally know how to use the return values of

the functions they call and most often do so correctly.

The more often a function has its return value checked,

the more likely it is to need its return value checked. If a

function almost always has its return value checked, the

instances in which its return value is not checked are

highly suspect and are good candidates for being bugs.

We also gather data automatically from the CVS

commits to help with the ranking of the error reports. We

search the CVS commit history to determine when a bug

our checker would find has been fixed. The fact that the

developer took the time to change this code suggests that

it is an important change to make. We expect that the

called function in such a bug fix, the function that

previously did not have its return value checked, does

need its return value checked before being used. Each

such function we find is flagged as being involved in a

bug fix in a CVS commit. We refer to these functions as

being flagged with a CVS bug fix. We suspect when this

function is called the return value has a valid reason to be

checked before being used.

Our tool ranks errors involving functions flagged with

a CVS bug fix higher than all functions not so flagged.

Within each list of functions--with and without CVS bug

fixes--the functions are sorted by the percent of their

return values checked in the current snapshot of the

software. At the top of the list then, are functions that

very often have their return value checked and are flagged

with a CVS bug fix.

We used a simple heuristic to determine if a CVS

commit contains a return value check bug fix. The old

and new versions of the committed files are both checked

for return value check errors. For a given function in a

file and a given function called by that function, if the

new version has more return value checks that are not

errors than the old version, the commit is said to fix a

return value check bug for the called function. Note that

simply adding an additional function call that has its

return value checked makes it appear that a fix has been

made.

5. Case Study

We ran a case study of our checker on the Apache

httpd 2.0 source code. This is a large project with a deep

CVS history. Our study was confined to the 2.0 branch

and did not look into any code that resided solely in the

1.0 branch. The current snapshot contains about 200,000

lines of code and approximately 2,200 unique functions

are called. These numbers include the core of the web

server and optional modules. Our checker runs on Linux

and we only considered modules that would run on such a

system. We also included the Apache Portable Runtime

(apr and apr-util) since the web server will not compile

without it. The APR is a set of libraries produced by

Apache to push some of the platform specific wrapper

code out of httpd and give the developer a consistent set

of APIs to use for common tasks.

In order to search the CVS repository for bug fixes we

had to take a number of steps. For each CVS commit, we

checked out the version of the code from the repository

produced by that commit. We used the configure script

supplied with the software to generate necessary files,

including Makefiles. The Makefiles were used to

determine the command line options needed to run the

particular source file through our checker.

72

We successfully evaluated 5188 CVS commits to

determine which functions were involved in a CVS fix to

a return value check. There were 3811 more commits

made to the CVS repository that we could not run through

our checker. Some CVS commits would not configure

correctly (1737). Some files contained C constructs that

our parser could not handle, most notably having a

variable number of arguments to a function (1027). The

parser [12] we used was stricter with type checking than

gcc. Many statements that would give warnings in gcc

give errors in the parser. For instance, passing NULL, an

integer, to a function that expects a void* caused the

parser to raise an error. A number of commits also had

true type errors where there was an actual bug checked in

to the repository that resulted in a type error. The number

of type errors, which caused a commit not to be checked,

was 584. Also, source files raised an internal error in the

parser 66 times. We were not able to track down the

cause of these internal errors.

5.1 Initial Results

Our checker flagged 7,223 errors in the current

snapshot of the httpd source. Each error flagged by the

checker is an individual call site that has the return value

produced by the called function used improperly. These

7,223 errors represent calls to 866 unique functions.

In searching the CVS commits, we found 75 functions

that have a return value check bug fix and are called at

least once in the current CVS snapshot. Of those 75, 41

have their return value checked 100% of the time in the

current CVS snapshot (55%) and so are involved in no

flagged errors. For comparison, 52% of all functions

(886) had their return value checked 100% of the time.

The remaining 34 functions are involved in 231 errors

flagged by our checker. We consider these 231 errors

likely candidates to be true errors. Note that this number

of 231 does not include errors for functions with none of

their return values checked, with large numbers (over

100) of unchecked return values or functions called via

function pointers.

Upon inspecting these 231 errors, we believe 61 errors

could be true bugs and need further inspection. The 61

bugs found in these errors gives a false positive rate of

74% for this chunk of our results (functions flagged with

a CVS bug fix). See Table 3 for the breakdown of these

results.

There were 86 functions not flagged with a CVS bug

fix but with their return value checked more than 50% of

the time in the current software snapshot. These

functions account for 222 of the errors flagged by our

checker. Since these functions have their return values

checked more often than not, we expect these errors also

to be likely candidates for being true errors. Upon

inspecting these 222 errors, we believe 37 could be true

bugs and need further inspection. This chunk of our

results produces a false positive rate of 83%. See Table

4 for the breakdown of these results.

Overall we inspected 453 error reports and found 98

that we believe are suspicious and should be marked as a

bug. This gives an overall false positive rate of 78%.

The remaining 6,770 errors marked by our checker are

produced by functions whose return value is checked

50% of the time or less and we expect these errors to be

unlikely candidates to be true errors, thus we did not

inspect them.

A false positive rate closer to 50% would be more

palatable. A threshold for false positives is 50% since we

would like a user to be as likely as not to find a bug when

inspecting an error reported by our tool. Our technique

has not yet achieved this false positive rate. However, a

simple Lint-like tool would have had a higher false

positive rate as each error report is given equal weight

and not ranked in any way. We would have had to

review each of the 7,223 errors to find the 98 bugs, which

would be 73 false positives for every real bug.

5.2 A Bug Expressed

We were able to crash the httpd server by exploiting a

bug found by our tool. The return value of the function

ap_server_root_relative() is used directly as an argument

to strcmp(). The function ap_server_root_relative()

accepts two arguments, a fully qualified directory name

and a filename. The return value is a char* that

represents a path to a file, basically directory/filename.

The return value can be NULL in a number of cases. The

easiest way to get the function to return NULL is to have

the fully qualified name of the file (plus NULL

Table 3: Errors, CVS Bug fix flagged functions

Checked

99% -51%

Checked

50% - 1%

Ignored (I) 22 33

Argument (A) 13 14

NULL dereference (N) 2 45

Calculation (C) 12 18

Stored, Unused (S) 8 27

Unused on Path (P) 15 9

Stored, Untested (U) 6 7

Table 4: Errors, non-CVS Bug fix flagged functions

Checked

99% -51%

 Checked

50%- 0%

Ignored (I) 67 2803

Argument (A) 48 1439

NULL dereference (N) 21 532

Calculation (C) 10 61

Stored, Unused (S) 32 429

Unused on Path (P) 17 486

Stored, Untested (U) 27 216

73

terminator) to be larger than 4096 bytes. In this section

of the source code, 4096 appears to be the size of all the

filename buffers. Obviously, if one passes a directory

and filename to the function that has a combined length of

more than 4096 the function will return NULL. If this

happens when the return value is used directly as an

argument to strcmp() httpd will crash.

6. Conclusions

In this paper we have presented a method of creating

bug-finding tools that is driven by the analysis of

previous bugs. We have shown that the bugs cataloged in

bug databases and those found by inspecting source code

change histories differ in their types and level of

abstraction. Bugs listed in a bug database are generally

reported by users outside of the development team and

are most often reported against a public release of the

software rather than a CVS snapshot. These bugs are also

of a more high level nature, involved with algorithmic

problems rather than simple coding problems.

We have shown that the past bug history of a software

project can be used as a guide in determining what types

of bugs should be expected in the current snapshot.

Moreover, such data can help to recommend which of a

group of bug reports are more likely to be true.

The checker we have implemented checks for function

return value usage errors and uses data mined from the

revision history of the software to rank the results in a

useful way. With our checker we have been able to

identify 98 instances in the Apache web server that we

believe should be classified as bugs and need further

inspection.

In the future we want to identify other static bug

checkers that can benefit from information mined from a

CVS repository. We also plan to refine our current static

checker and run it on other software projects.

7. Acknowledgements

This work was supported in part by DOE Grants DE-

FG02-93ER25176, DE-FG02-01ER25510, and DE-

CFC02-01ER254489 and NSF award EIA-0080206. We

would like to thank Dan Quinlan at Lawrence Livermore

National Laboratory for help in using the ROSE parser.

8. References

[1] Apache Web Server, httpd. Available online at

http://httpd.apache.org

[2] Ashcraft, K., Engler, D., Using programmer-written

compiler extensions to catch security holes. In Proceedings

IEEE Symposium on Security and Privacy, Oakland,

California, May 2002.

[3] Ball, T., Rajamani, S. K., The SLAM Project: Debugging

System Software via Static Analysis, In Proceedings of the

29th Symposium on Principles of Programming Languages

(POPL ’02), Jan 2002, Portland, Oregon, USA, pages: 1 –

3.

[4] Bevan, J., Whitehead, E. J., Identification of Software

Instabilities, In Proceedings of 10th Working Conference

on Reverse Engineering, (WCRE ’03) Victoria, British

Columbia, Canada, Nov 13-17, 2003. pages 134-143.

[5] Engler, D., Incorporating application semantics and control

into compilation, In Proceedings USENIX Conference on

Domain-Specific Languages (DSL'97), October 15-17,

1997.

[6] Engler, D., Chelf, B., Chou, A., Hallem, S., Checking

System Rules Using System Specific, Programmer-Written

Compiler Extensions. In Proceedings of the Fourth

Symposium on Operating Systems Design and

Implementation, San Diego, CA, October 2000.

[7] Gall, H., Jazayeri, M., Krajewski, J., CVS Release History

Data for Detecting Logical Couplings, In Proceedings of

the International Workshop on Principles of Software

Evolution (IWPSE ‘03), Helsinki, Finland, September

2003, pages 13-23.

[8] Graves, T. L., Karr, A. F., Marron, J. S., Siy, H., Predicting

fault incidence using software change history, IEEE

Transactions on Software Engineering, Vol 26, Issue 7,

July 2000. pages: 653 – 661

[9] Heine, D. L., Lam, M. S., A Practical Flow-Sensitive and

Context-Sensitive C and C++ Memory Leak Detector In

Proceedings of the Conference on Programming Language

Design and Implementation (PLDI ’03), June 2003.

[10] Hovemeyer, D., Pugh, W., Finding Bugs Is Easy,

unpublished,

http://www.cs.umd.edu/~pugh/java/bugs/docs/findbugsPap

er.pdf

[11] Kremeneck, T., Engler, D., Z-Ranking: Using Statistical

Analysis to Counter the Impact of Static Analysis

Approximations, In Proceedings of 10th Annual

International Static Analysis Symposium, (SAS ’03) San

Diego, CA, USA, June 2003. pages 295-315.

[12] Quinlan, D., ROSE: A Preprocessor Generation Tool for

Leveraging the Semantics of Parallel Object-Oriented

Frameworks to Drive Optimizations via Source Code

Transformations. In Proceedings Eighth International

Workshop on Compilers for Parallel Computers (CPC ’00),

Aussois, France, Jan 4-7, 2000.

[13] Unix Time Sharing System Programmer’s Manual, AT&T

Bell Laboratories, 1979. Seventh Edition, Volume 2a.

[14] Ying, A. T. T., Murphy, G. C., Ng, R. T., Chu-Carroll, M.

C., Using version information for concern inference and

code-assist. Position paper for Tool Support for Aspect-

Oriented Software Development Workshop at the

Conference on Object Oriented Programming, Systems

Language and Applications (OOPSLA ‘02), Seattle, WA,

USA, November 4-8, 2002.

74

Mining Repositories to Assist in Project Planning and Resource Allocation

Tim Menzies
Department of Computer Science,

Portland State University,
Portland,
Oregon

tim@menzies.us

Justin S. Di Stefano, Chris Cunanan,
Robert (Mike) Chapman,

Integrated Software Metrics Inc.,
Fairmont, West Virginia

justin@lostportal.net, ccunanan@ismwv.com,
Robert.M.Chapman@ivv.nasa.gov

Abstract

Software repositories plus defect logs are useful for learning
defect detectors. Such defect detectors could be a useful resource
allocation tool for software managers. One way to view our detec-
tors is that they are a V&V tool for V&V; i.e. they can be used to
assess if ”too much” of the testing budget is going to ”too little”
of the system. Finding such detectors could become the business
case that constructing a local repository is useful.

Three counter arguments to such a proposal are (1) no gen-
eral conclusions have been reported in any such repository despite
years of effort; (2) if such general conclusions existed then there
would be no need to build a local repository; (3) no such general
conclusions will ever exist, according to many researchers. This
article is a reply to these three arguments.

To appear in the International Workshop on Mining Software
Repositories (co-located with ICSE 2004) May 2004; http://
msr.uwaterloo.ca.

1 Introduction

To make the most of finite resources, test engineers typically
use their own expertise to separate critical from non-critical soft-
ware components. The critical components are then allocated
more of the testing budget than the rest of the system. A con-
cern with this approach is that the wrong parts of the system might
get the lions-share of the testing resource.

Defect detectors based on static code measures of components
in repositories are a fast way of surveying the supposedly non-
mission-critical sections. Such detectors can be a V&V tool for
V&V; i.e. they can be used to assess if too much of the testing
budget is going to too little of the system. As shown below, sat-
isfactory detectors can be learnt from simple static code measures
based on the Halstead [2] and Mccabes [3] features1. Such mea-
sures are rapid and simple to collect from source code. Further,

1Elsewhere, we summarize those metrics [4]. Here we just say that
Halstead measures reflect the density of the vocabulary of a function while
Mccabe measures reflect the density of pathways between terms in the
vocabulary.

the detectors learnt from these measures are easy to use.
Our experience with detect detectors has been very positive.

Hence, we argue that organizations should routinely build and
maintain repositories of code and defect logs. When we do so, we
often hear certain objections to creating such repositories. This
paper is our reply to three commonly-heard objections. For space
reasons, the discussion here is brief. For full details, see [5, 6].

The first objection concerns a lack of external validity. De-
spite years of research in this area, there has yet to emerge standard
static code defect detectors with any demonstrable external valid-
ity (i.e. applicable in more than just the domain used to develop
them). Worse still, many publications argue that building detectors
from static code measures is a very foolish endeavor [1, 7].

To counter the first argument, there has to be some demon-
stration from somewhere that at least once, another organization
benefited from collecting such an endeavor. Paradoxically, mak-
ing such a demonstration raises a second objection against local
repository construction. If detectors are externally valid then or-
ganizations don’t need new data. Rather, they can just import data
from elsewhere. To refute this buy not build objection, it must be
shown that detectors built from local data are better than detectors
built from imported data.

Finally, if the proposal to build a repository survives objections
one on two, then a third objection remains. Why is it that we
make such an argument now when so many others have previously
argued the opposite for so long? That is, it must be explained the
source of opposition to static defect detectors.

The rest of this paper addresses these objections using the
NASA case study described in the next section. Using that data,
we show that external valid detectors can be generated. Next, we
show that these detectors can be greatly improved using detectors
tuned to a local project. Finally, we identity potential sources of
systematic errors that may have resulted in prior negative reports
about the merits of static code defect detectors.

2 Case Study Material

Our case study material comes from data freely available to
other researchers via the web interface to NASA’s Metrics Data
Program (MDP) (see Figure 1). MDP contains around two dozen

75

Figure 1. The MDP repository: http://mdp.ivv.

nasa.gov.

static code measures for thousands of modules based on the Hal-
stead and McCabe measures. The data also include defect counts
seen in up to eight years of project data.

From that data, various data mining [9] techniques have been
applied to automatically build detectors. The output of these learn-
ers were compare to detectors generated by a DELPHI approach;
i.e. asking experienced test engineers what thresholds they use to
identify problematic code. These DELPHI predictors return “true”
or “false” if some code measure passes some value.

The LSR and M5 data miners build predictors for the number
of defects expected in new modules [9]. LSR uses linear stan-
dard regression to fit a single multi-dimensional linear model to
the continuous detect data. For example, LSR generates equation
such as Equation 1 below:

defects1 = 0.231 + (0.00344 ∗ N) + (8.88e − 4 ∗ V)

−(0.185 ∗ L) − (0.0343 ∗ D) − (0.00541 ∗ I)

+(1.68e − 5 ∗ E) + (0.711 ∗ B) (1)

−(4.7e − 4 ∗ T)

c1 = −0.3616

Here, 〈N, V, L, D, I, E, B, T 〉 are the derived Halstead metrics
discussed in [4] and c1 is the correlation of defects1 to the actual
error per module count. Correlation is discussed further below.

While LSR generates one equation, the M5 data miner can gen-
erate systems of equations. M5 is an extension of LSR that divides
the data into a small number of regions and fits one linear model
to each region.

Two other data miners used in this study were the J48 [9]
ROCKY [4]. J48 is a standard decision tree learner and ROCKY is
a home-brew learner than used a Gaussian approximation to pro-
pose interesting divisions of numeric data. ROCKY generates de-
tector for each number attribute a of the form a≥N where ≥N
covers α% of the Gaussian area. N is set such that:

α ∈ {0.05, 0.1, 0.15, . . . , 0.95} (2)

module found in defect tracking log?
no yes

signal
no;
i.e. v(g) < 10

A = 395
LOCA = 6816

B = 67
LOCB = 3182

detected? yes
i.e. v(g) ≥ 10

C = 19
LOCC = 1816

D = 39
LOCD = 7443

Acc = accuracy = 83%

PF = Prob.falseAlarm = 5%

PD = Prop.detected = 37%

prec = Precision = 67%

E = effort = 48%

Figure 2. A ROC sheet assessing the detector v(g) ≥ 10.
Each cell {A,B,C,D} shows the number of modules, and
the lines of code associated with those modules, that fall
into each cell of this ROC sheet.

ROCKY is a very simple learner that was run on subsets of the
available data; i.e. just on the Mccabes data; just on the Halstead
data; or just on simple lines of code (LOC) counts per module.

ROCKY and J48 process discrete defect classes. To generate
discrete defect data, we took numeric defect counts per module
and declared predicted defects “true” if #defects≥1. In order to
compare M5 and LSR to ROCKY and J48, the M5 and LSR output
was converted to discrete booleans as follows. If M5 or LSR’s
predictions passes some threshold T , then predicted defects was
set to “true”. Our experiments repeated that test for:

T ∈ {0.3, 0.6, . . . , 3} (3)

The predictors generated by these methods were assessed via
several assessment metrics. The accuracy, or Acc, of a detector as
the number of true negatives and true positives seen over all events.
In terms of the cells 〈A, B, C, D〉 shown in Figure 2, accuracy is
Acc = A+D

A+B+C+D
.

Apart from accuracy, several other measures are of interest.
The probability of detection, or “PD”, is the ratio of detected
signals, true positives, to all signals; i.e. PD = D

B+D
(PD is

also called the recall of a detector). Also, the probability of a
false alarm, or “PF ”, is the ratio of detections when no signal
was present to all non-signals: i.e. PF = C

A+C
. Further, the

precision of a detector comments on its correctness when it is
triggered; i.e. prec = D

C+D
.

Another statistic of interest is the effort associated with a
detector. If the detector is triggered, then some further assess-
ment procedure must be called. For the particular static code de-
fect detectors discussed in this paper, we will assume that this
effort is proportional to the lines of code in the modules. Un-
der that assumption, the effort for a detector is what percentage
of the lines of code in a system are selected by a detector; i.e.
effort = E = LOCC+LOCD

LOCA+LOCB+LOCC+LOCD
.

Correlation is a statistic representing how closely two vari-
ables co-vary. Let ai and pi denote some actual and predicted val-
ues respectively. Let n and x denote the number of observations
and the mean of the n observations, respectively. Then:

76

-0.5

-0.4

-0.3

-0.1

 0

 0.1

 0.3

 0.4

 0.5

prec acc effort pd pf

m
ea

n

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

Figure 3. Between project stabilities in defect detectors. Mean µ and standard deviation σ of changes in defect detector statistics.
Dots denote mean (µ) values. Whiskers extend from µ + σ to µ − σ.

SPA =
P

i(pi−p)(ai−a)

n−1
; Sp =

P
i(pi−p)2

n−1
; Sa =

P
i(ai−a)2

n−1

correlation = c = SP A√
SpSa

Correlation varies from -1 (perfect negative correlation)
through 0 (no correlation) to +1 (perfect positive correlation). For
example, the following equation, found via LSR using just lines of
code LOC counts, has a very different correlation c to Equation 1
shown above:

defects2 = 0.0164 + 0.0114 ∗ LOC (4)

c2 = 0.65

3 Lack of External Validity?

To test the external validity of our detectors, we took five
NASA applications, then learnt detectors from each of them using
〈DELHI, LSR, M5, J48, ROCKY 〉. Because of Equation 2
and Equation 3, this resulted in hundreds of detectors. All these
detectors were then applied to the other four applications.

As predicted by the lack of external validity objection, the
detectors behaved differently when applied to the different appli-
cations. Figure 3 shows the mean and standard deviation of the
differences in the values when the same detector was applied to
different applications. For some learners and some assessment
metrics, the observed standard deviations were quite large. For ex-
ample, precision varied wildly and the variance in detectors built
from module linesofcode was always large.

However, in stark contrast to the lack of external validity ob-
jection, the differences were mostly very small. For example, with
the exception of precision, most of the differences in the means
were ≤0.1; and some learners consistently generated detectors
with a very small variances (e.g. LSR,J48,DELPHI). To place Fig-
ure 3 in perspective 〈pd, pf, acc, effort, prec all vary from zero
to one so the difference between two (e.g.) pd values can vary
from -1 to +1.

4 Buy, not Build?

The results Figure 3 come from a very varied set of applica-
tions. While all the studied applications used C or C++, they were
built at four different locations around the country by five differ-
ent teams for five very different application areas (ground station
telemetry processing, flight software for earth orbiters, simulation
tools for making predictions about hardware behavior, etc).

If defect detectors are so stable across domains, then the buy
not build objection states that we need not build our own local
repository. Instead, we need only reuse detectors learnt elsewhere.

Figure 4 is our reply to this objection. That figure shows re-
sults from learning detectors at different times in the life cycle of
the same application. Defect logs were extracted at 6,12,18,24,
and 48 months into the development of one of our applications.
Defect detectors learnt at time < X were applied to source code
developed at time ≥ X . Figure 4 shows the mean and standard
deviations of the differences in 〈pd, pdf, effort, acc, prec〉 seen
when the same detector was applied at different times to the the
same application. Compared to Figure 3, the mean differences
and standard deviations are greatly reduced.

77

-0.5

-0.4

-0.3

-0.1

 0

 0.1

 0.3

 0.4

 0.5

prec acc effort pd pf

m
ea

n

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

J4
8

ro
ck

y
de

lp
hi

m
5

ls
r

ro
ck

y
on

 H
al

st
ea

d
ro

ck
y

on
 L

in
es

O
f

ro
ck

y
on

 M
cC

ab
e

Figure 4. Within-project stabilities in defect detectors (same format as Figure 3.

5 Source of Opposition?

Figure 3 showed that defect detectors from other applications
are stable; i.e. provide nearly the same results when applied to
the current applications. Further, Figure 4 shows that detect detec-
tors learnt from an historical record of the current application are
stabler. This report is hence very positive on the merits of using
repositories to build static code defect detectors.

Other researchers are not as positive. This section reviews
some of those critiques and offers several source of systematic er-
rors that may explain prior negative results in this area.

There are many reasons to doubt the merits of static code mea-
sures such as the Halstead/Mccabe metrics. Such metrics collected
from a single module know neither (a)how often that module will
be called nor (b)the severity of the problem resulting from the
module failing nor (c)the connections from this module to other
modules. Also, static code measures are hardly a complete char-
acterization of the internals of a function. Fenton offers an in-
sightful example where the same functionality is achieved using
different programming language constructs resulting in different
Mccabe measurements for that module [1]. Worse still, certain
empirical evidence suggests that the Mccabe metrics might be no
more informative than more simplistic measures. For example,
Fenton & Pleeger note that cyclomatic complexity is highly corre-
lated with lines of code [1]. Sheppard & Ince remarks that “for a
large class of software it is no more than a proxy for, and in many
cases outperformed by, lines of code” [7].

In reply to this pessimism, we take care to distinguish between
primary and secondary detect detectors. We endorse standard
practice in which test engineers primarily use their domain knowl-
edge and the available documentation to identify the modules that
require most of their attention. Our detectors are only secondary
tools to quickly survey the parts of the system that were ruled out
by the primary methods. If our secondary detectors trigger, then

we would suggest that test engineers divert a little of the resources
allocated by the primary method to check some other regions.

Primary detectors need a high probability of detection (pd). For
all the reasons listed by Fenton & Pleeger and Sheppard & Ince,
it is clear that defect detectors learnt from Halstead/Mccabe-style
static code measures may not yield high pds. However, static code
defect detectors are satisfactory secondary detectors. An impor-
tant property of a secondary detector is a low probability of false
alarm pf . Such low false alarms are required to ensure test en-
gineers are not inappropriate distracted from their inspections of
modules selected by the primary detectors. The bottom plot of

PD:

 0

 25

 50

 75

 100

 0.1 0.45 0.65 1 2 3

%

LSR
HALSTED’

PF:

 0
14
19

 50

 75

 100

 0.1 0.45 0.65 1 2 3

%

threshold (T)

LSR!
HALSTED’

Figure 5. Effort, probability of false alarm, and probabil-
ity of detection seen using defectsi ≥ T where defectsi

is one of Equation 1 (the “HALSTEAD” curves) or Equa-
tion 4 (the “LSR” curves) and T controls when the detector
triggering (see the discussion around Equation 3).

78

 0

 0.25

 0.5

 0.75

 1

%

30 detectors, sorted by effort

accuracy

PF
PD

effort

A B

Figure 6. Each x-axis point x describes the
pf, pd, effort, accuracy of one detector.

Figure 5 shows the range of pf as a function of a detection thresh-
old constant T . Note that by selecting T appropriately, detectors
can be created with a pf that are so low that, if they are triggered
by module X , then it becomes nearly certain that there is a defect
in module X .

Empirically, detectors with low pfs also have low pds. For
example, in Figure 5, a detector with a pd = 75% has a pf of
around 20% and higher pfs have higher pds. This is to be ex-
pected since, as discussed above, static code defect detectors are
ignorant of many features of an application. Hence, it is important
that secondary detectors are paired with primary detectors since
the latter has the greatest chance of finding bugs in the inspected
regions. Similarly, primary detectors should be paired with low
pf secondary detectors. While we hope test engineers are the
most effective defect detectors, the available empirical evidence
is, at best, anecdotal [8]. As shown here, much is known about the
〈pf, pd, accuracy, effort, precision〉 of static code measures.
Further, they are cheap to build and easy to run over large code
libraries. Hence, they are a useful way to check that aren’t test
engineers look in the wrong place.

As to Fenton & Pleeger’s and Sheppard & Ince’s comments
about the merits of lines of code vs more complex measures such
as Halstead/Mccabe, we saw above that lines of code can gen-
erate detectors with large variances across different applications
(recall the between-application results of Figure 3). Also, we
take issue with their use of correlation to assess detectors. Recall
that Figure 5 results come from two equations with very differ-
ent correlations to number of defects: -0.3616 and 0.65 for Equa-
tion 1 and Equation 4 and (respectively). Either equation can reach
some desired level of detection, regardless of their correlations,
merely by selecting the appropriate threshold value. For exam-
ple, a pd = 75% can be reached using either method by setting
T ≥ 0.65 or T ≥ 0.45.

More generally, we have found several commonly use assess-
ment metrics to be uninformative about defect detectors. The prob-
lematic assessment measures are correlation, precision, and accu-
racy. Figure 3 showed that precision can vary wildly while other
measures are more stable. Figure 5 showed that correlation can be
insensitive to other measures like pd. Figure 6 shows a problem
with accuracy. In that figure, hundreds of our detectors are shown

sorted on increasing effort. Consider the detectors marked A and
B on Figure 6. These two detectors have nearly the same accuracy,
yet with efforts, PDs, and PF s that vary by factors as high as
4. That is, accuracy can be uninformative regarding issues of pf ,
pd, and effort.

In summary we are positive about static code defect detectors
and others are not for several reasons. Firstly, we as negative as
others about the merits of static code measures as a primary de-
fect detection method. However, we are very positive about us-
ing static code defect detectors with low pfs as secondary detec-
tors which can augment some other detection method. Secondly,
we can demonstrate stable pf results across multiple applications.
That is, if our secondary detectors trigger then it is highly unlikely
that they are incorrectly reporting a detect. Thirdly, prior criti-
cisms may be passed on problematic assessment measures such as
correlation. We recommend using pf , pd, and effort to assess
detectors.

A drawback to this analysis is the sample size. While our work
is based on a larger sample that some other publications in this
area, more data is always better. We plan to frequently re-sample
NASA’s metrics data repositories to check our conclusions. This
ability to revisit and revise old conclusions about software en-
gineering is an important benefit of public domain code+defect
repositories such as NASA’s MDP program.

References

[1] N. E. Fenton and S. Pfleeger. Software Metrics: A Rigorous
& Practical Approach. International Thompson Press, 1997.

[2] M. Halstead. Elements of Software Science. Elsevier, 1977.
[3] T. McCabe. A complexity measure. IEEE Transactions on

Software Engineering, 2(4):308–320, Dec. 1976.
[4] T. Menzies, J. D. Stefano, K. Ammar, K. McGill, P. Callis,

R. Chapman, and D. J. When can we test less? In IEEE
Metrics’03, 2003. Available from http://menzies.us/
pdf/03metrics.pdf.

[5] T. Menzies and J. S. D. Stefano. How good is your blind
spot sampling policy? In 2004 IEEE Conference on High As-
surance Software Engineering, 2003. Available from http:
//menzies.us/pdf/03blind.pdf.

[6] T. Menzies, J. S. D. Stefano, C. Cunanan, and R. M. Chapman.
The business case for defect logging. In IEEE Transactions
Software Engineering (in preperation), 2004.

[7] M. Shepped and D. Ince. A critique of three metrics. The
Journal of Systems and Software, 26(3):197–210, September
1994.

[8] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. Lind-
vall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz. What
we have learned about fighting defects. In Proceedings of 8th
International Software Metrics Symposium, Ottawa, Canada,
pages 249–258, 2002. Available from http://fc-md.
umd.edu/fcmd/Papers/shull_defects.ps.

[9] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

Acknowledgements: The work was sponsored by the NASA Of-
fice of Safety and Mission Assurance under the Software Assur-
ance Research Program led by the NASA IV&V Facility under
NASA contract NCC2-0979 and NCC5-685.

79

Bug Report Networks: Varieties, Strategies, and Impacts
in a F/OSS Development Community

Robert J. Sandusky Les Gasser Gabriel Ripoche
Graduate School of Library and Information Science

University of Illinois at Urbana-Champaign
{sandusky,gasser,gripoche}@uiuc.edu

Abstract

Our empirical research has shown that a
predominant structural feature of defect tracking
repositories is the evolving "bug report network" (BRN).
Community members create BRNs by progressively
asserting various formal and informal relationships
between bug reports (BRs). In one F/OSS bug repository
under study, participants assert two formal relationships
(duplications and dependencies) and various informal
relationships (like "see also" references).

BRNs can be interpreted as (1) information ordering
strategies that support collocation of related BRs,
decreasing cognitive and organizational effort; (2)
sense-making strategies wherein BRNs provide more
refined representations of software and work-
organization issues; (3) social ordering strategies that
rearrange collective relationships among community
members. This paper presents findings from an
investigation of the nature, extent, and impact of BRNs
in one large F/OSS development community. We
investigate whether and how specific classes of BRNs
influence problem management within the community,
and identify several new research questions.

1. Introduction

We are conducting empirical investigations into how
F/OSS development communities manage software
problems. The goal of our research is to develop models
of how software problems are managed by large,
distributed software development organizations. We aim
to identify factors, such as information, activity, and
process, which help explain better or worse software
problem management (SWPM) performance, with the
goal of both understanding such distributed collective
practices and improving software production. The early
stages of our work include qualitative analysis of the
information used and activities performed by members
of this community. We use this qualitative analysis to
identify concepts, phenomena, and relationships between
them as revealed through the examination of the bug

reports created and managed by this community. The
factors we identify can then be related to each other,
hypotheses can be created, and the hypotheses can
subsequently be tested in order to isolate the factors that
affect SWPM performance. In addition, the seeds
created from this human-based mining and analysis can
be “computationally amplified,” forming the basis of
broader automated extraction of process models from
very large corpuses of problem data [1].

The negative financial and social impacts of low
quality software have been well documented [2, 3].
Previous research on software quality has focused on the
development of metrics [4] and defect prediction models
[5]. Other research has identified relationships between
organizational structure, processes, and quality [6, 7, 8].
The SWPM process itself has been studied less
frequently [9]. Our research approach, while grounded
in empirical data, acknowledges the contributions of
research on process and organizational issues.

Figure 1 shows the main elements of the bug report
repository used by one community we are studying. The
repository itself is a relational database system and a set
of associated scripts that interact with the database and
provide a Web-based user interface. The repository
contains more than 235,000 records, referred to as bug
reports (BRs). Each BR consists of (1) a number of
fixed, vocabulary-controlled fields (e.g., status,
resolution, severity), (2) several short-length text fields
(e.g., keywords, summary), (3) attachments (e.g.,
screenshots, code patches), (4) a sequential series of text
comments that are time-stamped and show the identity of
the submitter, and (5) optional indications of
relationships between BRs (e.g., duplication,
dependency, and informal citations).

One of the most notable structural features of this
community’s bug report repository is the bug report
network (BRN). A bug report network is created when
members of the software community assert duplication,
dependency, or reference relationships among bug
reports. Duplication and dependency are both formal,
symmetrical types of relationships with an explicit and
codified representation in the bug reports. Community

80

members frequently create informal relationships, like
“see also” references, by referring to other bug reports
when they are adding text comments to existing bug
reports. Sixty-five percent of the bug reports in this
repository are associated with other bug reports using
one of these three types of relationships.

Figure 1. Bug report repository elements

Bug reports are first-class database objects, but bug
report networks are not. Figure 1 shows three typical
BRN patterns. The leftmost BRN represents the 35% of
the bug reports that have zero formal or informal
relationships to other bug reports: each of these bug
reports forms a trivial BRN. The middle BRN shows
two bug reports associated by a dependency or informal
relationship. The rightmost BRN shows a more complex
set of relationships. The doubled bug report on the right
represents a bug report with a duplicate relationship to
the second bug report behind it. The duplicated bug
report is also associated by either a dependency or
informal relationship with the other bug report in the
network. Note that it is also possible for BRNs to be
connected to each other, as indicated by the line
connecting the middle and rightmost networks.

We use the following definitions, based upon the
definitions stated by the community in their SWPM
documentation, to identify the formal relationships
between bug reports:
- Duplicate: A bug report is marked as a duplicate if

the problem represented by the bug report is believed
to be already represented by another bug report. A
duplicate relationship is a formal, symmetrical
relationship between two bug reports.

- Dependency: A bug report is marked as a blocker of
another bug report if resolution of the software
problem it represents blocks development and/or
testing work on the problem represented by the other
bug report. A bug report is marked as dependent on
another bug report if the problem it represents can't
be fixed until the problem represented by the other
bug report is fixed. Bug reports that are dependent on
each other have a formal, symmetrical “blocks” /
“depends on” relationship.

Community members also frequently assert informal
references between bug reports. While it is possible to
automatically extract instances of informal relationships
from the repository, the nature and purpose of these
references vary considerably and are most reliably
understood by reading the bug reports and understanding
the contexts in which the citations are made. Here are
some examples of these informal references:

- This looks related to #X
- See comments on X -- same applies here
I think.

- My fix for X kinda helps fixing this
too.

- Should bug X be added to this?

2. Method

A random sample of 385 BRs was systematically
drawn from a population of more than 182,000 bug
reports opened over a five year period. The bug report is
the primary unit of analysis in this study. The sample
size was determined using an approach reported by
Powell [10] (p.75). A conservative sample size was
suitable here because we did not have complete
information about the variability of all characteristics of
the bug reports at the time the sample was drawn.

2.1. Qualitative analysis

Each bug report in the sample was treated as a text
and was read and analyzed using a content-analytic
approach [11]. Concepts, phenomena, and relationships
between phenomena were identified and refined as they
emerged from the bug reports during data analysis using
grounded theory [12]. References to other BRs were
noted (their location within the BR, reference type, BR
serial number) as each BR in the sample was analyzed.

2.2. Automatic processing

Another characterization of bug report networks was
attempted using automatic extraction of relationships in
a snapshot of over 130,000 bug reports originating from
the same bug report repository. Two types of
relationships were considered:

- Formal relationships identified by specific fields
(“blocks” and “depends on”) or computer generated
output inserted as comments in the bug report’s
discussion.

- Informal relationships in the form of references made
by participants in their comments (e.g.: “See bug
#X”, “Looks like bug Y”, etc.), which were
mined using regular expressions.

81

The processing yielded relationship matrices from
which BRNs could be identified. However, the
automated processing was less accurate than content
analysis. When we compared the automatic and manual
processes, we found that the automatic process
completely identified all the “informally” connected BRs
40% of the time. Also, our current extraction approach

does not allow for the distinction of the various types of
relationships that are being established. Results from the
qualitative analysis are being used to improve the
regular expressions used to automatically identify the
informal relationships.

Figure 2. Bug report network

3. Anatomy of a bug report network

Figure 2 represents the bug report network associated
with one “critical” severity bug report drawn from the bug
report repository under study. This bug report network,
consisting of six bug reports, illustrates a number of
different relationships that often occur in this repository.
The x-axis represents time over a 6-month period; the
relationship of the objects in the diagram to the timescale
is approximate. The columns of dashes below each bug
report’s lifeline represent the count of comments added to
a bug report on a single day and are shown to provide a
sense of the level of activity associated with each bug
report throughout the bug report’s life.

Bug report “B” (BR-B in the diagram) is the central
report in this network. BR-B was opened with a “critical”
severity level because it represented a bug that caused the
software system to crash. As soon as it was opened, it was
associated as “blocking” the resolution of BR-A. BR-A
already existed, and was defined as a meta bug used to
collocate a group of 15 (including BR-B) bug reports
representing bugs that caused crashes in this part of the
overall system. (Note that it would be possible to look at
BR-A as the central BR in a different BRN: this is an
example of how BRNs can be connected to each other as
shown in Figure 1. See discussion of meta bug report
networks below.)

The chain of duplicate relations between BR-B, BR-C,
and BR-D is of interest. BR-C was opened several weeks
after BR-B, during a six-week period when BR-B was not

82

very active (no comments added). BR-D was opened later
the same day BR-C was opened. BR-D was quickly
identified as representing the same bug as BR-C and
marked “resolved/duplicate.” BR-C was not identified as
representing the same phenomena as BR-B until about six
weeks after BR-C was opened.

The relationships between BR-B, BR-E, and BF-F are
also of interest. The level of activity on BR-B was high
during month 5. At one point, a patch for the bug
represented by BR-B was introduced. This change caused
the bug represented by BR-E (a type of bug and bug
report identified as a “regression”) to occur. BR-F was
opened a couple of hours after BR-E was opened, and was
immediately recognized as a duplicate of BR-E. The bad
patch associated with BR-B was quickly backed out to
resolve the problem associated with BR-E. BR-E was
then marked “resolved/fixed.”

4. Varieties, strategies, and impacts

The kinds of relationships found between bug reports,
their frequency of occurrence, BRN strategies,
implications of the construction and use of BRNs, and
future work are discussed in this section.

4.1. Varieties

Almost two-thirds (65%) of the 385 bug reports in the
sample have either a formal or informal relationship with
at least one other bug report. Table 1 shows the frequency
with which different types of relationships occur within
the sample of 385 bug reports.

Table 1. Frequency of relations in sample

Duplicates
BRs with one or more duplicate BRs 10%
BRs resolved as a duplicate of another BR 33%

Dependencies
BRs “blocking” one or more BR 12%
BRs “dependent on” one or more BR 7%

Informal
BRs with “informal” relation to one or
more BR

33%

Community members sometimes create bug reports
that, instead of representing problems (bugs), anchor a
collection of bug reports having common characteristics
(e.g., all the high priority bug reports that should be fixed
prior to the next software release). Community members
refer to these anchor bug reports as “meta” or “tracking”
bug reports. In the BRN illustrated in Figure 2, BR-A is a
“meta” bug report used to create a network of bug reports
representing system crashes of a similar type. Creation of
a meta bug report and its associated BRN represents a
specific social and information management adaptation

made by community members to increase the utility of the
bug report repository.

4.2. Strategies

Constructing BRNs is an information structuring
strategy. Individual bug reports, first-class database
objects, are composed over time into a new form of
information, the BRN. Creating a BRN collocates a group
of bug reports that would otherwise remain scattered and
disassociated from each other. A BRN thus adds virtual
structure to the bug report repository. Collocating
information by adding or imposing structure is a
complexity management / complexity reduction technique.

Asserting that a bug report is a duplicate of another
bug report, for example, shrinks the set of bug reports that
must be worked on. Shrinking the set of bug reports to
work on reduces the complexity of the field of work.
However, identification of duplicates is costly because
members of the community must identify duplicates
manually. There is also danger of mis-identification: bug
reports that are not true duplicates (false positives) will be
ignored because their status is “resolved.” It’s also clear,
because of late-marked duplication and duplication time
inversion, that “undiscovered” duplicate bug reports exist
and multiple groups of people may be duplicating effort
by working on two bug reports that represent the same
issue (see, for example, the time period between the
opening of BR-C and its resolution as a duplicate of BR-B
in Figure 2.)

We also suspect that there are patterns of BRNs, for
example patterns in the kinds of links that appear, and
patterns in the types of links that are sanctioned and even
crystallized into standard categories and supporting tools,
such as dependencies and duplicates. There may also be
patterns in how such networks are formed.

4.3. Impacts

As BRN construction orders information, it also orders
social relations. BRs are specifications/codifications of
social relationships, such as roles (reporter, assigned-to,
cc: list member) and dynamic and patterned interactions
(e.g. dialogues, question-response-elaboration sequences;
negotiation; coordination of work, etc.). This means that
as information is ordered through BRN
creation/extension/modification, social relations are also
being ordered. The impacts of this kind of social
reordering might vary. In some cases, time-to-resolution
may be improved by bringing more resources to bear upon
a problem. In other cases, performance might deteriorate
if, for example, the cost of coordinating the activities of
more people slows progress toward resolution.

When a bug report is marked "resolved/duplicate" this
means the bug report is resolved but it does not mean that
the underlying bug itself has been resolved.
"Resolved/duplicate" means that the resolver(s) believe

83

this is a duplicate report of a phenomenon that already has
an effective representation elsewhere in the repository. It
doesn't even mean that that the resolved bug report can
now be ignored, since we have seen instances of late-
identification of duplicates (e.g., BR-C in Figure 2) in
which accumulated knowledge and dialogue may still be
relevant to the resolution of the other bug reports in the
BRN. Thus the semantics of the “resolved” keyword are
clearly complex.

4.4. Future Work

Our work on understanding and identifying bug report
networks has just begun. Many challenges remain,
including:

- Identifying the situations in which BRNs are helpful
(or unhelpful) in managing software problems;
understanding the extent to which complex BRNs are
taken into account by community members during
problem resolution.

- Determining if BRNs are present in all bug report
repositories; how the capabilities of different
repositories and the conventions developed by the
different communities influence the use of BRNs.

- Quantifying the range of complexity of BRNs in this
and other bug report repositories; identifying the most
useful metrics for measuring the size and complexity
of BRNs (for example, a BRN can be thought of as a
graph, with each bug report as a vertex in the graph).

- Developing useful representational forms (e.g., Figure
2) for BRNs that can contribute to our understanding
and increase the utility of BRNs as a tool for SWPM.

- Determining how the inclusion of a BR in a BRN
affects the community’s SWPM performance (e.g.,
testing for a correlation between BRN membership and
time to resolution).

Automatic extraction and representation of BRNs will
be an important part of addressing the research questions
raised here. The practical application of results of this
research to software engineering practice also depends
upon the development of effective and scalable automatic
extraction and representation techniques. Challenges
related to automatic extraction and representation include:

- Improving techniques for automatically extracting and
representing BRNs from a bug report repository.

- Develop computational tools to discover and formalize
the latent, undiscovered relationships between bug
reports.

5. Conclusion

The analysis performed so far demonstrates that bug
report networks are common in the bug report repository

studied here: 65% of the bug reports sampled are part of a
BRN. Members of this community commonly use the
formal, symmetrical relationships of duplication and
dependency as well as a wide variety of informal
relationships. BRNs are a common and powerful means
for structuring information and activity. BRNs, however,
have not yet been the subject of concerted research by the
software engineering community. The continuation of this
stream of research will result in a more complete
understanding of the contribution BRNs make to effective
software problem management.

6. References

[1] Gasser, L., & Ripoche, G. (2003). Distributed collec-
tive practices and F/OSS problem management: perspec-
tives and methods. CITE'03,Troyes, France, December
2003.

[2] NIST. (2002). The economic impacts of inadequate
infrastructure for software testing: final report. May
2002. Planning report 02-3. Gaithersburg, MD: NIST.

[3] Leveson, N. & Turner, C.S. (1993). An investigation
of the Therac-25 accidents. IEEE Computer, 26(7), 18-41.

[4] Osterweil, L. (1996). Strategic directions in software
quality. ACM Computing Surveys, 28(4), 738-750.

[5] Fenton, N. E., & Neil, M. (1999). A critique of
software defect prediction models. IEEE Transactions on
Software Engineering, 25(5), 675-689.

[6] Conway, M.E. (1968). How do committees invent?
Datamation, 14(4), 28-31.

[7] Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communications of
the ACM, 15(12), 1053-1058.

[8] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W.,
& Paulk, M. (1997). Software quality and the capability
maturity model. Communications of the ACM, 40(6), 30-
40.

[9] Crowston, K. (1997). A coordination theory approach
to organizational process design. Organization Science,
8(2), 157-175.

[10] Powell, R.R. (1991). Basic research methods for
librarians. (2nd ed.). Norwood, NJ: Ablex.

[11] Weber, R. P. (1990). Basic content analysis. (2nd
ed.). Newbury Park, CA: Sage.

[12] Strauss, A., & Corbin, J. (1990). Basics of qualitative
research: grounded theory procedures and techniques.
Newbury Park, CA: Sage.

84

A Tool for Mining Defect-Tracking Systems to Predict Fault-Prone Files

Thomas J. Ostrand
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

ostrand@research.att.com

Elaine J. Weyuker
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

weyuker@research.att.com

Abstract

In earlier research we identi ed characteristics of les
in large software systems that tend to make them particu-
larly likely to contain faults. We then developed a statistical
model that uses historical fault information and le char-
acteristics to predict which les of a system are likely to
contain the largest numbers of faults. Testers can use that
information to prioritize their testing and focus their efforts
to make the testing process more ef cient and the result-
ing software more dependable. In this paper we describe
a proposed new tool to automate this prediction process,
and discuss issues involved in its design and implementa-
tion. The goal is to produce an automated tool that mines
the project defect tracking system and that can be used by
testers without requiring any particular statistical expertise
or subjective judgements.

Keywords: Prediction Tool, Software Faults, Software De-
fects, Fault-prone, Software Testing

1 Background

Change tracking systems are commonly used within
software development projects to allow the development
group to record software faults (also known as defects) and
the actions taken to repair them, as well as other changes
made to a software system for any reason at all. If the
change information is recorded accurately and kept up-to-
date, the team is always aware of the system’s status, knows
what problems are currently outstanding, and can make
sound decisions about whether the product is ready for re-
lease. Fault history also provides valuable data for analysis
of project trends. A new project can be evaluated against
the fault patterns of previous related projects, and changes
made to the project’s methods, tools, or organization if fault
rates are significantly higher than expected.

Many large AT&T software projects use an integrated
change tracking/version control system, which makes both

the project code and the change information accessible to
developers and testers. The version control part of the sys-
tem maintains the code base of the development project. A
system administrator sets up an initial framework of the
project in the system, and programmers then write code
and check it in under version control. When the program-
mer wants to modify code, s/he checks out the needed files,
makes the changes, and then checks the code back in.

The change tracking part of the system maintains a
database of modi cation requests (MRs) that have been
written for the project under development. An MR can be
written by any member of the project team, for reasons that
include creating initial code for the project, adding code
to implement new functionality, performing maintenance
updates to the project, and reporting failures or incorrect
behavior. Typically, developers write the first three types
of MRs, and testers write the last type, although develop-
ers may also detect and report incorrect behavior. Failure-
reporting MRs are sent to the developer team, which may
use the description of the problem to determine the most
appropriate developer to fix the problem.

In order to avoid confusion between references to a soft-
ware system that is using the change tracking system, and
references to the change tracking system itself, in the re-
mainder of this paper we use the term system to refer to the
change tracking system, and we use the term project to refer
to a system under development.

Change tracking involves accessing a database that
records relevant information about any changes that are
made to the software. We are particularly interested in
changes that are made because of the presence of faults, and
we will therefore sometimes refer to the relevant portions of
the combined change tracking/version control system sim-
ply as the defect tracking system. For every detected fail-
ure, an entry is made in the defect tracking system describ-
ing the problem and the change made to fix it, including a
text description of the problem, the names of the MR writer
and the developer who ultimately fixed the problem, and the
specific files that were modified in response to the MR.

85

Our work has used the information in the AT&T defect
tracking databases of several large software projects to de-
velop a model that can be used to guide the testing of future
releases of the projects. We analyzed the historical change
information for these projects, categorizing faults and iden-
tifying code characteristics that are associated with faults.
Using the fault information from past project releases, we
constructed a statistical fault prediction model for the files
of future releases [3]. As described in that paper, for one
large AT&T project with 17 successive quarterly releases,
the model identified 20% of the files in each new release
that contain between 71% and 92% of the faults identified
in that release. The average over all of the releases consid-
ered was 83%.

This prediction can be very useful to help system testers
focus their efforts on the parts of the project where defects
are most likely to be located. Of course, it does not remove
the obligation to assure that all parts of the project have been
adequately tested, but knowing that most of the problems
will show up in a relatively small portion of the code means
that it should be profitable to test that portion earlier and
more intensively than other parts. Time available for test-
ing is always limited, and testing the most fault-prone areas
early should reveal more faults earlier. As a result, more
of the precious testing time can be allocated to areas that
may otherwise not be covered as thoroughly, possibly lead-
ing to software with higher reliability with the same use of
testing resources. Another possibility is that testing time
could actually be reduced, as the tester might uncover the
same faults more quickly, leading to the same degree of re-
liability sooner and more cheaply than would otherwise be
possible.

The fault prediction is done using a negative binomial
regression model whose independent variables are charac-
teristics of the individual files in a release. The variables
include the number of lines of code in the file; whether the
file is new, changed, or unchanged; the file’s age (the num-
ber of releases it has previously appeared in); the number
of faults found in the previous release; and the file’s source
language.

2 A Proposed Fault Prediction Tool

Once the mathematical framework of the model has been
established, it is straightforward but tedious to apply it to the
specific values for a particular release, to derive the fault-
proneness predictions for individual files in the next release.
We therefore propose constructing a testing tool that incor-
porates the prediction model, and that will allow testers to
generate an ordered list of the most fault-prone files with-
out requiring the intervention or assistance of a professional
statistician, or any particular understanding of the statistics
involved .

The tool assigns each file of the next release an expected
number of faults, and then ranks the files in decreasing or-
der of that number. In our earlier case study [3], we found
that the total number of faults predicted for even relatively
small sets of files became quite accurate. The tool will al-
low the tester to request sets of files that are specified either
by the percentage of the project that they constitute, or by
the expected percentage of faults that they will contain.

For example, the tester could ask for a list of the 20% of
the next release’s files that are predicted to have the most
faults, as was shown for the sample software project an-
alyzed in [3]. However, since the predictor ranks all the
project’s files in order of their number of predicted faults,
the user can just as easily ask for the top T% of that listing
for any value T.

Conversely, the user could request a listing of the mini-
mum set of files that are predicted to contain at least P% of
the faults in the release. In [3], we found that over the sev-
enteen project releases, the top 20% of files selected by the
model included from 71% to 92% of the actual faults in that
release, with an overall average of 83%. If we had always
wanted to identify a minimal set of files that were projected
to contain at least 80% of the faults, then for some releases
the model would have identified fewer than 20% of the files,
and for other releases more than 20% of the files.

3 Tool Components

The tool will have three main components.
The first component extracts information about faults in

the current release from the change tracking database. This
information includes the names of specific files that were
changed to repair each fault. This component requires an
accurate determination of which entries in the database ac-
tually represent faults. We found that it was often difficult
to accurately identify which changes were made because of
faults and which were made for some other reason such as
a new feature or a planned enhancement.

Although the same change control system is used by
many different AT&T projects, different project teams use
the system in different ways, and provide different informa-
tion regarding the motivation behind a change. For exam-
ple, one team we worked with uses an MR field that spec-
ifies either the group that raised the issue behind a change,
or indicates that the change was due to maintenance or an
enhancement. Maintenance and enhancement changes are
clearly not faults. When the group that raised the issue was
the system test group, the MR was almost certainly created
because of a failure, and the change was almost certainly to
repair a fault. In other cases, such as a customer-requested
change, it was sometimes difficult to determine whether or
not a change was due to a fault without reading through the
entire text of the modification request entry.

86

Without an explicit identification of fault/no-fault in each
report, the best approach is to analyze the text description
of the change report. The reporter is expected to write a
brief description of the original problem, which is usually
(although not always) adequate to determine if the change
is fault-based. If the description is ambiguous, and the re-
porter is accessible, then a personal interview can usually
resolve the situation. But this requires a large amount of
human effort and can be prohibitively expensive if there are
many faults listed in the defect tracking system.

In a second study that we carried out [3], there were ap-
proximately 500 change reports to analyze, and the descrip-
tion analysis approach was feasible. However, in our origi-
nal study [2], many thousands of MRs were entered into the
change tracking system, and over 5000 of them were deter-
mined to be faults for the first twelve releases of the project.
This was certainly too many to analyze individually, or to
question each of the reporters. For that project, after discus-
sions with the project test manager, we defined a heuristic
that we used to determine what was a fault. We will fur-
ther discuss the problem of how to decide whether a change
report represents a defect in the next section.

After the faults have been identified, the tool’s second
component goes to the code base to extract properties of the
files. The model uses properties of all files in the project,
not just those that have been modified. Since only a small
percentage of the files are usually modified in a given re-
lease, the tool can maintain a table of file properties for the
entire project, and update only the entries for the files that
have been modified as a result of fault detection. The file
characteristics used by the model include the file size, the
number of faults in previous releases, the file’s change sta-
tus, the file’s age, and the programming language used. The
first three of these can change during development and de-
bugging of a release, and should be checked and updated for
any files that are mentioned in a change report. The file’s
age simply increases by one with each successive release,
and the programming language does not change.

Extracting all this data about files and faults is facilitated
by the fact that the defect tracking system and the version
control system are integrated in a single system.

Our current model does not use other static properties
such as cyclomatic number [1] and inter-module coupling.
Our original case study found that including the cyclomatic
number in the model did not improve its predictive ability
over that of lines of code. We have not yet assessed the pre-
dictive ability of module coupling. If additional studies de-
termine that using these characteristics improve the model’s
accuracy, they may be incorporated into future versions, and
can also be checked from the code base.

The tool’s third component makes the fault predictions,
using the fault and file information gathered in the previ-
ous steps, as well as the model’s earlier calculations. Once

the file characteristics are known, they can be supplied as
input to the model, and the predictions for the next release
produced.

4 Designing the Predictor Tool

As presently implemented, the fault-proneness predic-
tion is a multi-step process with human intervention at sev-
eral key points. These include identifying the particular
project MRs that represent faults; identifying the files that
have been modified to fix a fault MR; and obtaining proper-
ties of the modified files.

The testing tool will replace the human intervention with
scripts that implement these required activities. In this sec-
tion we discuss the issues that have to be solved to accom-
plish this.

4.1 What is a Defect?

As mentioned above, the tool’s database extractor com-
ponent needs a means to determine which change reports
represent defects. We originally thought we could base
this decision on the report’s category. Different software
projects use this field in different ways, but it always par-
titions the changes into the three classes of enhancement,
maintenance and modi cation. One project uses the cate-
gory to provide additional information about modifications,
by identifying where in the development/testing process the
need for a change was originally determined. The possible
values are development, system test, user acceptance test
and customer.

At first glance, it seems clear that enhancement and
maintenance changes should not be counted as faults, while
the modification changes are all faults.

Unfortunately, we have found that certain fields in the
change report, including the category, are frequently not
filled out accurately. Testers are always under pressure to
complete work quickly, and testing time is always at a pre-
mium. We found that creators of modification requests of-
ten leave the default values in place for fields of the MR that
they believe are not important.

Since the category field is frequently unreliable, we have
begun to identify faults by examining the job category of the
person who created the modification request. If this person
is an integration or system tester, then the modification re-
quest invariably represents a fault. When developers initiate
an MR, it may be necessary to understand the culture of the
development group and the nature of the requested change,
or it may be necessary to simply read all requests initiated
by developers to determine whether they are new features,
enhancements, or actual faults.

Developers can report two types of problems. The first
type occurs when a developer writes a modification request

87

against his or her own code, after the developer discovers
a problem during unit testing. In some projects, devel-
opers note all such faults, and the resulting changes are
recorded in the database. More commonly, unit testing
changes are never recorded; the developer simply keeps the
code checked out during the unit testing phase, makes all
changes to the single checked-out version, and only checks
the code in once, when it’s judged ready for integration. If
reporting unit test faults is part of the development group
culture, then the change reports based on them should be
included as input to the predictor.

Developers can also write a modification request when
they detect a problem or inconsistency in the project spec-
ification. In this case, the developer is actually testing and
finding a defect in the specification. There may not be any
code yet written, and hence none to be changed, or the de-
veloper might have written code originally based on a mis-
taken understanding of the specification. These specifica-
tion MRs represent real faults that have to be corrected, and
they should be included as input to the predictor.

However, many changes initiated by developers are not
defect fixes, but are enhancements, new features, or mod-
ifications to keep the project consistent. Separating these
from the fault-based changes requires more detailed analy-
sis of the change description, or a face-to-face meeting with
the developer.

This situation leads us to the third, and best, means of
identifying a change report as originating with a discovered
defect: ask the person who has written the change report.
To help collect this answer as painlessly as possible, the
management of one project has agreed to augment its MR
creation form with an explicit fault-classification field with
3 possible values: “Fault”, “no fault”, “unknown”. To avoid
false answers generated by testers or developers in a hurry,
the field has no default value. Future users of the change
report system would be expected to fill out this field. This
simple addition to the MRs should both improve the accu-
racy of the data, and hence the accuracy of the prediction,
and also simplify the data mining process, making it possi-
ble to automate this portion of the data extraction.

Since the fault-classification field has been added only
very recently, we do not yet have any analysis results for
change reports that use it. However, we do believe that it
will be an essential part in fulfilling our goal of building a
tool to automate the identification of the most fault-prone
files of a project.

4.2 Obtaining Properties of Files

Obtaining file properties is a two-step process: first, the
fault MRs have to be interrogated to identify the proper files,
and second, those files have to be located in the code base
and analyzed.

The AT&T defect tracking system is a proprietary rela-
tional database that makes information available as either a
text file report or an Excel spreadsheet. The Excel format
allows users to extract certain large classes of change re-
ports and feed their information directly into a spreadsheet.
Once the entries are in the spreadsheet, it is quite simple to
create tables that show relations between different attributes
of the change reports, and that can summarize totals of dif-
ferent types of reports. Unfortunately, the current version
of the extraction into Excel only includes those fields of the
change report that have a fixed number of possible values.
While this covers many of the change report fields, it does
not include a list of files that have been changed, since there
can be arbitrarily many of them.

The text reports are produced by a set of specialized
commands that can search for data and create text files with
varying levels of detail. These commands can be used to
access all the database’s information, but apart from spec-
ifying which details should be included, the user has little
control over the format of the text report. This means that
post-processing programs must be written to extract the par-
ticular details that are needed for our fault-proneness pre-
diction. In particular, we have to search through the report
to find the text strings that name the files that are associated
with each fault. We presently do this search with stand-
alone shell scripts that are run by a human on the change
system’s text reports. The tool will integrate the change sys-
tem’s commands with these scripts to remove the necessity
for human intervention.

Once the files are identified, we again use stand-alone
scripts initiated by a human to extract their static proper-
ties. The scripts are run over the latest build of the project
code, and include simple line and character counts. More
complex code metrics, like the cyclomatic number, have
also been computed, although our current prediction model
does not use them. A possible structure for the predictor
tool is to run these code analyses independently, to build
and maintain a table of their values. The tool can then use
the table entries whenever they are needed to produce fault-
proneness results.

5 Using On-Demand Fault Predictions

The original intent of the fault-proneness predictor was
to provide guidance for testers when testing starts on a new
release, helping them to focus their efforts on a small per-
centage of the files that the model predicts are most likely
to contain faults. In this scenario, the fault-proneness pre-
diction for release N+1 would be made as close as practical
to the beginning of system testing for N+1, to take maxi-
mum advantage of the fault data generated by the testing of
release N.

However, we can also envisage a tool that would be

88

able to produce the model predictions on demand at any
time during the development and testing of a given release,
based on the latest information that has been entered into the
change database, and the latest configuration of the code.

The availability of on-demand fault-proneness prediction
would allow testing guidance based on release N to be given
during the testing of release N. A possible scenario would
be to run the on-demand prediction every night after the sys-
tem testing phase has started. This would augment all the
prior fault data with the current day’s failure and fault in-
formation, and would provide the testers each morning with
fresh guidance on where to concentrate testing efforts. The
daily prediction should not be used to completely revise the
project’s original test plan. Rather, its information should
be viewed as supplemental, giving advice about potential
serious trouble areas in the code.

6 Summary

The tool proposed in this paper is an outgrowth of our
studies of defects and characteristics of files containing de-
fects reported for large AT&T software projects. It provides
an automated framework for the fault-proneness prediction
model that we developed earlier, and will allow testers and
developers to generate and use the prediction results with-
out the assistance or intervention of specialists.

The issues encountered in designing the tool include how
to identify modification requests that represent software de-
fects, how to make use of data extracted from the repository
to interrogate the development project’s code base, and how
to present the tool’s capabilities to its potential users in the
most useful way.

The tool design is presently at a very early stage, but the
success of the prediction model in our case studies encour-
ages us to believe that this will eventually become a highly
useful element of the system tester’s toolkit.

References

[1] T.J. McCabe. A Complexity Measure. IEEE Trans. on
Software Engineering, Vol 2, 1976, pp. 308-320.

[2] T. Ostrand and E.J. Weyuker. The Distribution of
Faults in a Large Industrial Software System. Proc.
ACM International Symposium on Software Testing
and Analysis (ISSTA2002), Rome, Italy, July 2002, pp.
55-64.

[3] T. Ostrand, E.J. Weyuker, and R.M. Bell. Where the
Bugs Are. Proc. ACM International Symposium on
Software Testing and Analysis (ISSTA2004), Boston,
MA, July 2004.

89

Towards Understanding the Rhetoric of Small Changes

-- Extended Abstract --

Ranjith Purushothaman

Server Operating Systems Group

Dell Computer Corporation

Round Rock, Texas 78682

ranjith_purush@dell.com

Dewayne E. Perry

Electrical & Computer Engineering

The University of Texas at Austin

Austin, Texas 78712

perry@ece.utexas.edu

Abstract

Understanding the impact of software changes has

been a challenge since software systems were first

developed. With the increasing size and complexity of

systems, this problem has become more difficult. There

are many ways to identify change impact from the

plethora of software artifacts produced during

development and maintenance. We present the analysis of

the software development process using change and

defect history data. Specifically, we address the problem

of small changes. The studies revealed that (1) there is

less than 4 percent probability that a one-line change will

introduce an error in the code; (2) nearly 10 percent of

all changes made during the maintenance of the software

under consideration were one-line changes; (3 the

phenomena of change differs for additions, deletions and

modifications as well as for the number of lines affected.

1. Introduction

Change is one of the essential characteristics of

software systems [1]. The typical software development

life cycle consists of requirements analysis, architecture

design, coding, testing, delivery and finally, maintenance.

Beginning with the coding phase and continuing with the

maintenance phase, change becomes ubiquitous through

the life of the software. Software may need to be changed

to fix errors, to change executing logic, to make the

processing more efficient, or to introduce new features

and enhancements.

Despite its omnipresence, source code change is

perhaps the least understood and most complex aspect of

the development process. An area of concern is the issue

of software code degrading through time as more and

more changes are introduced to it – code decay [5]. While

change itself is unavoidable, there are some aspects of

change that we can control. One such aspect is the

introduction of defects while making changes to software,

thus preventing the need for fixing those errors.

Managing risk is one of the fundamental problems in

building and evolving software systems. How we manage

the risk of small changes varies significantly, even within

the same company. We may take a strict approach and

subject all changes to the same rigorous processes. Or we

may take the view that small changes generally have

small effects and use less rigorous processes for these

kinds of changes. We may deviate from what we know to

be best practices to reduce costs, effort or elapse times.

One such common deviation is not to bother much about

one line or other small changes at all. For example, we

may skip investigating the implications of small changes

on the system architecture; we may not perform code

inspections for small changes; we may skip unit and

integration testing for them; etc. We do this because our

intuition tells us that the risk associated with small

changes is also small.

However, we all know of cases where one line

changes have been disastrous. Gerald Weinberg [9]

documents an error that cost a company 1.6 billion dollars

and was the result of changing a single character in a line

of code.

In either case, innocuous or disastrous, we have very

little actual data on small changes and their effects to

support our decisions. We base our decisions about risk

on intuition and anecdotal evidence at best.

Our approach is different from most other studies that

address the issue of software errors because we have

based the analysis on the property of the change itself

rather than the properties of the code that is being

changed [7]. Change to software can be made by addition

of new lines, modifying existing lines, or by deleting

lines. We expect each of these different types of change

to have different risks of failure.

Our first hypothesis is specific to one-line changes,

namely that the probability of a one-line change resulting

in an error is small. Our second hypothesis is that the

failure probability is higher when the change involves

90

adding new lines than either deleting or modifying

existing lines of code.

To test our hypotheses, we used data from the source

code control system (SCCS) of a large scale software

project. The Lucent Technologies 5ESS™ switching

system software is a multi-million line distributed, high

availability, real-time telephone switching system that

was developed over two decades [6]. The source code of

the 5ESS project, mostly written in the C programming

language, has undergone several hundred thousand

changes.

Our primary contribution in this empirical research is

an initial descriptive and relational study of small

changes. We are the first to study this phenomenon.

Another unique aspect of our research is that we have

used a combination of product measures such as the lines

of code and process measures such as the change history

(change dependency) to analyze the data. In doing so, we

have tried to gain the advantages of both measures while

removing any bias associated with each of them.

While several papers discuss the classification of

changes based on its purpose (corrective, adaptive,

preventive) there is virtually no discussion on the type of

change: software can be changed by adding lines, deleting

lines or by modifying existing lines. As a byproduct of

our analyses, we have provided useful information that

gives some insight into the impact of the type of change

on the software evolution process.

2. Background – Change Data Description

In the 5ESS, a feature is the fundamental unit of

system functionality. Each feature is implemented by a set

of Initial Modification Requests (IMRs) where each IMR

represents a logical problem to be solved. Each IMR is

implemented by a set of Modification Requests (MRs)

where each MR represents a logical part of an IMR’s

solution. The change history of the files is maintained

using the Extended Change Management System (ECMS)

(as shown in Figure.1 [3][5][7]) for initiating and tracking

changes and the Sources Code Control System for

managing different versions of the files. The ECMS

records information about each MR. Each MR is owned

by a developer, who makes changes to the necessary files

to implement the MR. The changes themselves are

maintained by SCCS in the form of one or more deltas

depending on the way the changes are committed by the

developer. Each delta provides information on the

attributes of the change: lines added, lines deleted, lines

unchanged, login of the developer, and the time and date

of the change.

While it is possible to make all changes that are

required to be made to a file by an MR in a single delta,

developers often perform multiple deltas on a single file

for an MR. Hence there are typically many more records

in the delta relation than there are files that have been

modified by an MR.

The 5ESS™ source code is organized into

subsystems, and each subsystem is subdivided into a set

of modules. Any given module contains a number of

source lines of code. For this research, we use data from

one of the subsystems of the project. The Office

Automation (OA) subsystem contains 4550 modules that

have a total of nearly 2 million lines of code. Over the last

decade, the OA subsystem had 31884 modification

requests (MR) that changed nearly 4293 files. So nearly

95 percent of all files were modified after first release of

the product.

Change to software can be introduced and interpreted

in many ways. However, our definition of change to

software is driven by the historic data that we used for the

analysis: A change is any alteration to the software

recorded in the change history database [5]. In

accordance with this definition, in our analysis the

following were considered to be changes:

One or more modifications to single/multiple lines;

One or more new statements inserted between

existing lines;

One or more lines deleted; and,

A modification to a single/multiple lines

accompanied by insertion or/and deletion of one or

more lines.

The following changes would qualify to be a one-line

change when an MR consists of either:

One or more modifications to a single line;

One or more lines replaced by a single line;

One new statement inserted between existing lines;

or,

One line deleted.

Previous studies such as [14] do not consider deletion

of lines as a change. However, from preliminary analysis,

we found that lines were deleted for fixing bugs as well as

making modifications. Moreover, in the SCCS system, a

line modification is tracked as a line deleted and a line

added. Hence in our research, we have analyzed the

impact of deleting lines of code on the software

development process.

3. Approach

In this section, we document the steps we took to

obtain useful information from our project database. We

first discuss the preparation of the data for the analysis

and then explain some of the categories into which the

91

data is classified. The final stage of the analysis identifies

the logical and physical dependencies that exist between

files and MRs.

3.1 Data Preparation

The change history database provides us with a large

amount of information. Since our research focuses on

analyzing one-line changes and changes that were

dependent on other changes, one of the most important

aspects of the project was to derive relevant information

from this data pool. While it was possible to make all

changes that are required to be made for a MR in a file in

a single delta, developers often performed multiple deltas

on a single file for an MR. Hence there were lot more

delta records than the number of files that needed to be

modified by MRs.

In the change process hierarchy, an MR is the lowest

logical level of change. Hence if the MR was created to

fix a defect, all the modifications that are required by an

MR would have to be implemented to fix the bug. Hence

we were interested in change information for each

effected file at the MR level. For example, in Table 1, the

MR oa101472pQ changes two files. Note that the file

oaMID213 is changed in two steps. In one of the deltas, it

modifies only one-line. However, this cannot be

considered to be a one-line change since for the complete

change, the MR changed 3 lines of the file. With nearly

32000 MRs that modified nearly 4300 files in the OA

subsystem, the aggregation of the changes made to each

file at the MR level gave us 72258 change records for

analysis.

Table 1: Delta relation snapshot

DELTA relation

MR FILE Add Delete Date

Oa101472pQ oaMID213 2 2 9/3/1986

Oa101472pQ oaMID213 1 1 9/3/1986

Oa101472pQ oaMID90 6 0 9/3/1986

Oa101472pQ oaMID90 0 2 9/3/1986

3.2. Data classification

Change data can be classified based on the purpose of

the change and also based on how the change was

implemented. The classification of the MRs based on the

change purpose was derived from the work done by

Mockus and Votta [3]. They classified MRs based on the

keywords in the textual abstract of the change. For

example, if keywords like ‘fix’, ‘bug’, ‘error’, and ‘fail’

were present, the change was classified as corrective. In

Table 2 we provide a summary of the change information

classified based on its purpose. The naming convention is

similar to the work done in their original paper.

However, there were numerous instances when

changes made could not be classified clearly. For

example, certain changes were classified as ‘IC’ since the

textual abstract had keywords that suggested changes

from inspection (I) as well as corrective changes (C).

Though this level of information provides for better

exploration and understanding, in order to maintain

simplicity, we made the following assumptions:

Changes with multiple ‘N’ were classified as ‘N’

Changes with multiple ‘C’ were classified as ‘C’

Changes containing at least one ‘I’ were classified as

‘I’

Table 2: Change Classification (purpose)

ID Change type Change purpose

B Corrective Fix defects

C Perfective
Enhance

performance

N Adaptive New development

I Inspection Following inspection

Changes which had ‘B’ and ‘N’ combinations were

left as ‘Unclassified’ since we did not want to corrupt the

data. Classification of these as either a corrective or

adaptive change would have introduced validity issues in

the analysis. Based on the above rules, we were able to

classify nearly 98 percent of all the MR into corrective,

adaptive or perfective changes.

Table 3: Change classification (implementation)

ID Change Type Description

C Modify Change existing lines

I Insert Add new lines

D Delete Delete existing lines

IC Insert/Modify Inserts and modifies lines

ID Insert/Delete Inserts and deletes lines

DC Delete/Modify Deletes and modifies lines

DIC All of the above Inserts, deletes and modifies lines

Another way to classify changes is on the basis of the

implementation method into insertion, deletion, or

modification. But the SCCS system maintains records of

only the number of lines inserted or deleted for the

change and not the type of change. Modifications to the

existing lines are tracked as old lines being replaced by

new lines (delete and insert). However, for every changed

file SCCS maintains an SCCS file that relates the MR to

92

the insertions and deletions made to the actual module.

Scripts were used to parse these files and categorize the

changes made by the MR into inserts, deletes or

modifications. Table 3 lists different types of changes

based on their implementation method.

3.3 Identifying file dependencies

Our primary concern was in isolating those changes

that resulted in errors. To do so, we identified those

changes that were dependencies – changes to lines of

code that were changed by an earlier MR. If the latter

change was a bug fix our assumption was that the original

change was in error. The one argument against the

validity of this assumption would be that the latter change

might have fixed a defect that was introduced before the

original change was made. However, in the absence of

prima facie evidence to support either case, and since

preliminary analysis of some sample data did not support

the challenging argument, we ruled out this possibility. In

this report, we will refer to those files in which changes

were made to those lines that were changed earlier by

another MR as dependent files.

The dependency, as we have defined earlier, may have

existed due to bug fixes (corrective), enhancements

(perfective), changes from inspection, or new

development (adaptive). 2530 files in the OA subsystem

were found to have undergone dependent change. That is

nearly 55 percent of all files in the subsystem and nearly

60 percent of all changed files. So, in nearly 60 percent of

cases, lines that are changed were changed again. This

kind of information can be very useful to the

understanding of the maintenance phase of a software

project. We had 51478 dependent change records and this

data was the core of our analysis.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

New/Dependent

change

classification

Corrective

(B)

Perfective (C) Adaptive (N) Inspection (I)

Original change classification

Inspection (I)

Adaptive (N)

Perfective (C)

Corrective (B)

Figure 1: Distribution of change classification on

dependent files

In Figure 1, we show the distribution of change

classifications of the dependent files across the original

files. The horizontal axis shows the types of changes

made to the dependent files originally. In the vertical axis,

we distribute the new changes based on their

classification based on the implementation type. From the

distribution it can be noted that most bug fixes were made

to code that was already changed by an earlier MR to fix

bugs. At this point of time, we can conclude that roughly

40 percent of all changes made to fix errors introduced

more errors.

It is also interesting to note that nearly 40 percent of

all the dependent changes were of the adaptive type and

most perfective changes were made to lines that were

previously changed for the same reason, i.e., enhancing

performance or removing inefficiencies.

4. Analysis Summary and Next Steps

We have found that the probability that a one-line

change would introduce at least one error is less than 4

percent. This result supports the typical risk strategy for

one line changes and puts a bound on our search for

catastrophic changes.

Interestingly, this result is very surprising considering

the intial claim: “one-line changes are erroneous 50

percent of the time” [21]. This large deviation may be

attributed to the structured programming practices and

development and evolution processes involving code

inspections and walkthroughs that were practiced for the

development of the project under study. Earlier research

[9] shows that without proper code inspection procedures

in place, there is a very high possibility that one-line

changes could result in error.

In summary, some of the more interesting

observations that we made during our analysis include:

Nearly 95 percent of all files in the software project

were maintained at one time or another. If the

common header and constants files are excluded

from the project scope, we can conclude that nearly

100 percent of files were modified at some point in

time after the initial release of the software product.

Nearly 40 percent of the changes that were made to

fix defects introduced one or more other defects in

the software.

Nearly 10 percent of changes involved changing only

a single line of code; nearly 50 percent of all changes

involved changing fewer than 10 lines of code;

nearly 95% of all changes were those that changed

fewer than 50 lines of code.

Less than 4 percent of one-line changes result in

error.

The probability that the insertion of a single line

might introduce a defect is 2 percent; there is nearly a

5 percent chance that a one-line modification will

cause a defect. There is nearly a 50 percent chance of

93

at least one defect being introduced if more than 500

lines of code are changed.

Less than 2.5 percent of one-line insertions were for

perfective changes, compared to nearly 10 percent of

insertions towards perfective changes when all

change sizes were considered.

The maximum number of changes was made for

adaptive purposes, and most changes were made by

inserting new lines of code.

There is no credible evidence that deletions of fewer

than 10 lines of code resulted in defects.

To fully understand these effects of small changes in

particular, and changes in general, this study should be

replicated across systems in different domains and of

different sizes.

5. Acknowledgements

We wish to thank Harvey Siy, Bell Laboratories,

Lucent Technologies, for sharing his knowledge of the

5ESS change management process. We would also like to

thank Audrus Mockus, Avaya Research Labs, and Tom

Ball, Microsoft Research, for their contributions and

suggestions.

6. References

[1] Fred Brooks, “The Mythical Man-Month”, Addison-

Wesley, 1975

[2] Dieter Stoll, Marek Leszak, Thomas Heck, “Measuring

Process and Product Characteristics of Software

Components – a Case study”

[3] Audris Mockus, Lawrence G. Votta, “Identifying Reasons

for Software Changes using Historic Databases”, In

International Conference on Software Maintenance, San

Jose, California, October 14, 2000, Pages 120-130

[4] Todd L Graves, Audris Mockus, “Inferring Change Effort

from Configuration Management Databases”, Proceedings

of the Fifth International Symposium on Software

Metrics, IEEE, 1998, Pages 267-273

[5] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S.

Marron, Audris Mockus, “Does Code Decay? Assessing

the Evidence from Change Management Data”, IEEE

Transactions on Software Engineering, Vol. 27, No. 1,

January 2001

[6] Dewayne E. Perry, Harvey P. Siy, “Challenges in

Evolving a Large Scale Software Product”, Proceedings of

the International Workshop on Principles of Software

Evolution, 1998 International Software Engineering

Conference, Kyoto, Japan, April 1998

[7] Audris Mockus, David M. Weiss, “Predicting Risk of

Software Changes”, Bell Labs Technical Journal, April-

June 2000, Pages 169-180

[8] Rodney Rogers, “Deterring the High Cost of Software

Defects”, Technical paper, Upspring Software, Inc.

[9] G. M. Weinberg, “Kill That Code!”, Infosystems, August

1983, Pages 48-49

[10] David M. Weiss, Victor R. Basili, “Evaluating Software

Development by Analysis of Changes: Some Data from

the Software Engineering Laboratory”, IEEE Transactions

on Software Engineering, Vol. SE-11, No. 2, February

1985, Pages 157-168

[11] Myron Lipow, “Prediction of Software Failures”, The

Journal of Systems and Software, 1979, Pages 71-75

[12] Swanson. E. B., “The Dimensions of Maintenance”,

Procedures of the Second International Conference on

Software Engineering, San Francisco, California, October

1976, Pages 492-497

[13] Todd L. Graves, Alan F. Karr, J.S. Marron, Harvey Siy,

“Predicting Fault Incidence Using Software Change

History”, IEEE Transactions on Software Engineering,

Vol. 26, No. 7, July 2000, Pg 653-661

[14] H.E. Dunsmore, J.D. Gannon, “Analysis of the Effects of

Programming Factors on Programming Effort”, The

Journal of Systems and Software, 1980, Pages 141-153

[15] Ie-Hong Lin, David A. Gustafson, “Classifying Software

Maintenance”, 1988 IEEE, Pages 241-247

[16] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta,

“Parallel Changes in Large Scale Software Development:

An Observational Case Study”, ACM Transactions on

Software Engineering and Methodology 10:3 (July 2001),

pp 308-337.

[17 Les Hatton, Programming Research Ltd, “Reexamining

the Fault Density – Component Size Connection”, IEEE

Software, March/April 1997, Vol. 14, No. 2, Pages 89-97

[18] Victor R. Basili, Barry T. Perricone, “Software Errors and

Complexity: An Empirical Investigation”,

Communications of the ACM, January 1984, Vol 27,

Number 1, Pages 42-52

[19] Dewayne E. Perry and W. Michael Evangelist. ``An

Empirical Study of Software Interface Errors'',

Proceedings of the International Symposium on New

Directions in Computing, IEEE Computer Society, August

1985, Trondheim, Norway, pages 32-38

[20] Dewayne E. Perry and W. Michael Evangelist. ``An

Empirical Study of Software Interface Faults --- An

Update'', Proceedings of the Twentieth Annual Hawaii

International Conference on Systems Sciences, January

1987, Volume II, pages 113-126.

[21] Anecdotally related in an email conversation.

94

Process and Community Analysis

Data Mining for Software Process Discovery in Open Source Software
Development Communities

Chris Jensen, Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

{cjensen, wscacchi}@ics.uci.edu

Abstract

Software process discovery has historically been
an intensive task, either done through exhaustive
empirical studies or in an automated fashion using
techniques such as logging and analysis of command
shell operations. While empirical studies have been
fruitful, data collection has proven to be tedious and
time consuming. Existing automated approaches
have expedited collection of fine-grained data, but do
so at the cost of impinging on the developer's work
environment, few of who may be observed. In this
paper, we explore techniques for discovering
development processes from publicly available open
source software development repositories that exploit
advances in artificial intelligence. Our goal is to
facilitate process discovery in ways that are less
cumbersome than empirical techniques and offer a
more holistic, task-oriented view of the process than
current automated systems provide.

1. Introduction and Beginnings

Software process models represent a networked
sequence of activities, object transformations, and
events that embody strategies for accomplishing
software evolution [10]. Software process discovery
seeks to take artifacts of development (e.g. source
code, communication transcripts, and so forth), as its
input and elicit the networked sequence of events
characterizing the tasks that led to their development.
This process model may then be used as input to
other process engineering techniques such as
redesign and re-engineering.

Open source software development (OSSD)
communities are a rich opportunity for software
process discovery and analysis with the benefit that
so much of their process-relevant data is publicly
available. Though many researchers have sought
non-automated means of software process modeling,
often there is so much information that it becomes
intractable to subsume unaided, thus motivating the
push for tools to assist in process discovery. In our
past efforts [6], we have shown the feasibility of
automating the discovery of software process models
by using manual simulation of how such automated

techniques might operate as a basis to substantiate
that discovery and modeling of software development
processes in large OSSD communities such as
Mozilla, Apache, NetBeans, and Eclipse (consisting
of tens of thousands of developers continuously
contributing software artifacts to the community
repository) is both plausible and amenable to
automation. In this paper, we explore techniques for
searching OSSD Web repositories for process data,
relating these data in the form of process events, and
assigning them to meaningful orders as a process
model in an attempt to reduce the manual effort
necessary to discover and model software processes.

We take, as our process meta-model, that of Noll
and Scacchi [8]. Software processes are composed of
events: relations of agents, tools, resources, and
activities organized by control flow structures
dictating that sets of events execute in serial, parallel,
iteratively, or that one of the set is selectively
performed.

It has been shown [6] that OSSD community
Web repositories encode process data in terms of the
structure of the community repository, its content,
and its usage and update patterns. OSSD artifacts
vary along these three dimensions over time, and this
variance is the source of process events. To
effectively discover a software process, we must be
able capture these data and their changes. This may
be done through combined application of text and
link analysis techniques, as described below. We
propose the use of text analysis techniques for
extracting instances of process meta-model entities
from the content of the community repositories,
followed by link analysis to assert relationships
between the mined entities in the form of process
events. Next, we apply usage and update patterns to
guide integration of the results of text and link
analysis together in the form of a process model (see
Figure 1). Finally, we conclude with addressing the
knowable validity of discovered software process
models and future directions for continuing work.

96

Figure 1: Web artifacts are filtered through a process entity taxonomy to extract atomic process action
events, sequenced using temporal indications within the artifacts and reconstructed into a process using PRM

2. Text Analysis

The bulk of the process data is found within the
content of Web artifacts. Much of the mapping
consists of text extraction, matching between text
strings in artifacts such as web pages and email
messages and a taxonomy of process related
keywords [5]. In the case of web content, we are
especially looking for items like date stamps on email
messages to place the associated events in time,
document authors, and message recipients. This
matching is done using a name recognizer.

An inherent challenge to name recognition is that
many classes of lexical items we desire to recognize
are open sets since we cannot enumerate all possible
proper names they contain. Further, name
classification suffers from synonymy and polysemy-
the same concept represented using different terms,
and different concepts represented using the same
term, respectively. This frequently occurs between
OSSD communities, using terms such as release
manager rather than release coordinator to describe
the same role. Fortunately, these are well known
problems in text analysis and most text analysis
systems provide some support for managing them.
The SENSUS ontology system [3] is one such system
that attempts to automate much of the domain
modeling work allegedly covering most areas of
human expertise. This automation is critical
considering lexicographical differences across and
evolution within communities.

Different types of content yield different
opportunities for gathering data. Common to most

open source communities are mailing lists and
discussion forums, source repositories, community
newsletters, issue repositories, and binary release
sections, among others. The mere presence of these
suggests certain activities in the development
process. They also signal what types of data may be
contained within. If we just look at source code
repositories, we can derive a process specification of
a limited set of activities- those that involve changes
to the code. Similarly, issue and defect databases tell
us that some testing is done on which the issue
reports are based. In some communities, issue
reports are also used to file feature requests. Such
information may also be found within discussion
forums or email lists.

Although it may seem tempting to attempt to
tailor analysis of artifacts to their type (e.g. email
message, defect report, etc) to capitalize on the
structure of the artifact type thereby facilitating
analysis. While this approach would potentially lead
to increased performance in analysis of artifacts
conforming to the structure expected by the artifact
model, this structure varies widely between
communities. To achieve high performance using
artifact structure models requires development of
models, not only for each artifact type in a
community repository, but also for each artifact type
used by all repositories under study.

It is interesting to note that we may uncover
“how-to” guides or other partial process prescriptions
in examining the community repository. Like all
content, these may not accurately reflect the process
as it is currently enacted, if they ever did. This

97

suggests the need for probabilistic methods for
modeling software development processes to filter
noise within a process instance and accounting for
variance across instances.

By itself, the result of text extraction gives us the
raw ingredients of a process model. We look to link
analysis to put these ingredients together into atomic
process events.

3. Link Analysis

Text extraction allows us to ask questions such
as who is collaboration with whom. From this
information, we can construct a social network
[Madey, et al] for the community. Social networks
may identify developers that frequently collaborate,
but they do not tell us what the developers are doing,
and, more importantly, how they are doing it. One
way to associate what and how information is
through the use of probabilistic relational modeling
(PRM).

Probabilistic relational modeling [4] is somewhat
inspired by entity relationship modeling used to
describe databases. In the classical example, we
might have tables of movie actors, movies, and roles
actors have played in movies and want to learn
relationships between them. Conceptually, this is no
different from linking process agents playing a role to
complete an action (using various tools that consume
and produce resources). Probabilistic relational
modeling allows inference about individual process
entities while taking into account the relational
structure between them, unlike traditional approaches
that assume independence between entities. Why is
this the right approach? Software processes driven
by the choice of tools used in development. Tools
either dictate what and when activities are performed,
or tools are selected to support desired activities, and
to an extent, suggest methods of completing activities
(i.e. enforce process compliance). Developer roles
emerge to perform these activities and carry out
supplemental work not performed by development
tools. Further, process entity instances arising from
text analysis have other relationships. They are
related contextually to other entities in the artifacts in
which they are found. They are also related to
artifacts hyperlinked to those in which they are
present. Such contextual relationships arising from
the logical structure of the repository are also good
candidates for probabilistic relational modeling.
Indeed, doing so allows us to form process events
whose entities span multiple artifacts.

To learn relationships between process entities,
we must know the context of the entity with respect

to others. This context can be represented in two
ways. Extracting the URL of the artifact in which
each entity is located allows us to cross-reference that
entity with others in the same artifact, as well as other
artifacts in which that entity is located. Additionally,
if we look at the creation date of the artifact in which
it was located, we may be able to intuit that those
instances that are temporally distant may signal an
activity of lengthy duration multiple instances of the
same activity. This determination, however, is the
work of usage and update pattern analysis.

4. Usage and Update Patterns

Usage patterns, like content size, are indicators
of which areas of the Web space are most active,
which reinforces the validity of the data found therein
and also claims of what activities in the process may
be occurring at a given time. Web access logs, if
available, provide a rich source of data. Web page
hit counters and last update statistics are also useful
for this purpose.

Cadez [1] and Hong, et al [2] demonstrate two
techniques for capturing Web navigation patterns,
however neither can be done in a strictly noninvasive
manner. The first uses server logs and cannot provide
tours of the repository and the latter requires
members to access the community Web through a
proxy server used to track tours. Nevertheless, if we
can map tours of the community Web to process
events, we can get a sense of which activities are
dependent on which other activities, which can be
done in parallel, which sequences are done
iteratively.

Fortunately, most large OSSD communities use
content managing tools to perform versioning of not
only product source code, but of other artifacts in the
repository, as well. By analyzing changelogs we can
learn the frequency of Web updates, in addition to the
agent performing the update, and to some extent, the
tools used to create the artifact, given its type. Work
by Ripoche and Gasser [9] does this to an extent,
studying defect resolution status in open source
defect repositories. The approach may be
generalized, extended with using the text and link
analysis techniques given above, and applied to other
types of artifacts, though with somewhat less
precision due to the inferential nature of process
entity relationship construction.

Unfortunately, revision histories are not always
available. Since OSSD repositories are publicly
accessible, it is possible to spider the Web repository
periodically to track changes externally via diff tools,
though information regarding the precise time of

98

update and author would be lost. As an ethical
matter, periodic spidering increases the load on the
server that, for large repositories, is potentially
burdensome.

By examining usage and update patterns, it is
possible for us to detect process control flow
structures. If we merely order then by time, the set of
process events discovered is sequential. Iterations
can be teased out of the sequence by considering
patterns of repeated tours and updates of and to the
Web. Activities being performed in parallel may also
be discerned by examining non-intersecting
concurrent usage and update patterns. Further, by
analyzing the variance between iterations of the same
task, we can identify sets of alternate activities, if the
variance is small.

5. Process Model Verification

A critical question of software process discovery,
regardless of automation, is how we may discern if
the process discovered is a correct reflection of the
process enacted by the community. The likelihood of
arriving at an accurate model increases with the
amount of data examined, within the limitations of
the techniques applied. This is because the
confidence of an asserted relationship between
process entities increases with more positive
instances of those relationships. Likewise, weak
relationships are rejected due to insufficient evidence.
At the same time, relationships between entities
cannot be discovered if the entities are not in the list
of process-relevant terms we look for during text
extraction. Thus, the process model obtained is only
as good as the taxonomy.

6. Conclusion

In this paper, we have presented a novel
approach to discovering software processes from
OSSD Web repositories, combining techniques for
text analysis, link analysis, and of repository usage
and update patterns. Though we have focused our
discussion on open source repositories, given the
availability of the artifacts, we believe that these
techniques can be applied to closed source software
repositories, and given the appropriate domain
information, other types of processes, as well. Our
hope is that in doing so, we may increase
understanding of the process techniques that have led
to their success.

7. Acknowledgments

The research described in this report is supported
by grants from the National Science Foundation
#ITR-0083075 and #ITR-0205679 and #ITR-
0205724. No endorsement implied. Contributors to
work described in this paper include Mark Ackerman
at the University of Michigan Ann Arbor; Les Gasser
at the University of Illinois, Urbana-Champaign;
John Noll at Santa Clara University; and Margaret
Elliott at the UCI Institute for Software Research.

8. References

[1] Cadez, I.V., Heckerman, D., Meek, C., Smyth, P.,
and White, S. Visualization of Navigation Patterns on
a Web Site Using Model Based Clustering. In Proc.
2000 Knowledge Discovery and Data Mining
Conference, 280-284. (2000).

[2] Hong, J. Heer, S. Waterson, and J. Landay,
WebQuilt: A proxy-based approach to remote web
usability testing, ACM Transactions on Information
Systems, 19(3), 263-285. (2001).

[3] Hovy, E.H., A. Philpot, J.-L. Ambite, Y. Arens,
J.L. Klavans, W. Bourne, and D. Saroz. 2001. Data
Acquisition and Integration in the DGRC's Energy
Data Collection Project. In Proceedings of the dg.o
2001 Conference. Los Angeles, CA.

[4] Getoor, L., Friedman, N., Koller, D., Taskar B.
Learning Probabilistic Models of Link Structure,
Journal of Machine Learning Research, 2002.

[5] Jensen, C. Applying a Reference Framework to
Open Source Software Process Discovery. In
Proceedings of the First Workshop on Open Source
in an Industrial Context OOPSLA-OSIC03,
Anaheim, CA October 2003.

[6] Jensen, C. and Scacchi W. Simulating an
Automated Approach to Discovery and Modeling of
Open Source Software Development Processes. In
Proceedings of ProSim'03 Workshop on Software
Process Simulation and Modeling, Portland, OR May
2003.

[7] Madey, G., Freeh, V., and Tynan, R. “Modeling
the F/OSS Community: A Quantitative
Investigation,” in Free/Open Source Software
Development, ed., Stephan Koch, Idea Publishing,
forthcoming.

[8] Noll, J. and Scacchi, W. Specifying Process
Oriented Hypertext for Organizational Computing.
Journal of Network and Computer Applications 24,
(2001). 39-61.

99

[9] Ripoche, G. and Gasser, L. "Scalable Automatic
Extraction of Process Models for Understanding
F/OSS Bug Repair", submitted to the 2003
International Conference on Software & Systems
Engineering and their Applications (ICSSEA'03),
CNAM, Paris, France, December 2003.

[10] Scacchi, W. Process Models in Software
Engineering, in J. J. Marciniak (ed.), Encyclopedia of
Software Engineering, 2nd. Edition, 2002.

100

Applying Social Network Analysis to the Information in CVS Repositories

Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona
GSyC, Universidad Rey Juan Carlos
{llopez,grex,jgb}@gsyc.escet.urjc.es

Abstract

The huge quantities of data available in the CVS reposi-
tories of large, long-lived libre (free, open source) software
projects, and the many interrelationships among those data
offer opportunities for extracting large amounts of valuable
information about their structure, evolution and internal
processes. Unfortunately, the sheer volume of that informa-
tion renders it almost unusable without applying method-
ologies which highlight the relevant information for a given
aspect of the project. In this paper, we propose the use of
a well known set of methodologies (social network anal-
ysis) for characterizing libre software projects, their evo-
lution over time and their internal structure. In addition,
we show how we have applied such methodologies to real
cases, and extract some preliminary conclusions from that
experience.

Keywords: source code repositories, visualization tech-
niques, complex networks, libre software engineering

1 Introduction

The study and characterization of complex systems is an
active research area, with many interesting open problems.
Special attention has been paid recently to techniques based
on network analysis, thanks to their power to capture some
important characteristics and relationships. Network char-
acterization is widely used in many scientific and techno-
logical disciplines, ranging from neurobiology [14] to com-
puter networks [1] [3] or linguistics [9] (to mention just
some examples). In this paper we apply this kind of analy-
sis to software projects, using as a base the data available in
their source code versioning repository (usually CVS). For-
tunately, most large (both in code size and number of devel-
opers) libre (free, open source) software projects maintain
such repositories, and grant public access to them.

The information in the CVS repositories of libre soft-
ware projects has been gathered and analyzed using several
methodologies [12] [5], but still many other approaches are
possible. Among them, we explore here how to apply some

techniques already common in the traditional (social) net-
work analysis. The proposed approach is based on consider-
ing either modules (usually CVS directories) or developers
(commiters to the CVS) as vertices, and the number of com-
mon commits as the weight of the link between any two ver-
tices (see section 3 for a more detailed definition). This way,
we end up with a weighted graph which captures some rela-
tionships between developers or modules, in which charac-
teristics as information flow or communities can be studied.

There have been some other works analyzing social net-
works in the libre software world. [7] hypothesizes that the
organization of libre software projects can be modeled as
self-organizing social networks and shows that this seems
to be true at least when studying SourceForge projects.
[6] proposes also a sort of network analysis for libre soft-
ware projects, but considering source dependencies be-
tween modules. Our approach explores how to apply those
network analysis techniques in a more comprehensive and
complete way. To expose it, we will start by introducing
some basic concepts of social network analysis which are
used later (section 2), and the definition of the networks we
consider 3. In section 4 we introduce the characterization
we propose for those networks, and later, in section 5, we
show some examples of the application of that characteri-
zation to Apache, GNOME and KDE. To finish, we offer
some conclusions and discuss some future work.

2 Basic concepts on Social Network Analysis

The Theory of Complex Networks is based on repre-
senting complex systems as graphs. There are many ex-
amples in the literature where this approach has been suc-
cessfully used in very different scientific and technologi-
cal disciplines, identifying vertices and links as relevant for
each specific domain. For example, in ecological networks
each vertex may represent a particular specie, with a link
between two species if one of them “eats” the other. When
dealing with social networks, we may identify vertices with
persons or groups of people, considering a link when there
is some kind of relationship between them.

Among the different kinds of networks that can be con-

101

sidered, in this paper, we use affiliation networks. In affil-
iation networks there are two types of vertices: actors and
groups. When we represent the network in terms of actors,
each vertex is associated with a particular person and two
vertices are linked together when they belong to the same
group of people. When we represent the network in terms
of groups, each vertex is associated with a group and two
groups are linked through an edge when there is, at least,
one person belonging to both at the same time.

Social networks can be directed (when the relationship
between any two vertices is one way, like “is a boss of”) or
undirected (when it is bidirectional, like “live together”). In
addition, they can be weighted (each edge has an associated
numeric value) or unweighted (each edge exists or not).

3 Definition of the networks of developers
and modules

In the approach we propose, for each project we build
two networks using the commit information of the CVS sys-
tem. Both correspond to the two sides of an affiliation net-
work obtained when we consider commiters and modules in
libre software projects. In both cases we consider weighted
undirected networks as follows:

• Commiter network. Each vertex corresponds to
a particular commiter (usually, a developer of the
project). Two commiters are linked when they have
contributed to at least one common module, being
the weight of the corresponding edge the number of
commits performed by both developers to all common
modules.

• Module network. Vertices represent a software mod-
ule of the project. Two modules are linked when there
is at least one commiter who has contributed to both of
them. Edges are weighted by the total number of com-
mits performed by common commiters to both mod-
ules.

The definition of what is a module will be different from
project to project, but usually will correspond to top level
directories in the CVS repository. In the case of both net-
works, the weight of each edge (degree of relationship) re-
flects the closeness of two vertices. The higher it is, the
stronger the relationship between the given two vertices.
We may also define the cost of relationship between any two
vertices as the inverse of the degree of relationship. That
cost of relationship is a measure of the “distance” between
them, in the sense that the higher this parameter the more
difficult to reach one vertex from the other. For this reason
we use the cost of relationship as the base for defining a dis-
tance in our networks. Given a pair of vertices i and j, we
define the distance between them as di j = ∑e∈Pi, j

ce, where

Pi, j is the set of all the edges in the shortest path from i to
j, and ce is the cost of relationship of edge e of such path.

4 Characterization of the networks consid-
ered for each project

For our analysis, we have considered a number of param-
eters characterizing the topology of the networks. In partic-
ular, we use the following definitions (which are common
in the analysis of affiliation networks):

• Degree of a vertex (k): number of edges connected to
that vertex. In the case of commiter networks, for each
commiter it represents the number of companion com-
miters, contributing to the same modules as the given
one. In the case of module networks, it is the total
number of modules with which the given one shares
commiters.

• Weighted degree of a vertex: sum of the weights of
all edges connected to that particular vertex. This can
be interpreted as the degree of relationship of a given
vertex with its direct neighborhood.

• Distance centrality of a vertex [13] (Dc): proximity
to the rest of vertices in the network. It is also called
closeness centrality: the higher its value, the closer
that vertex is to the others (on average). Given a vertex
v and a graph G, it can be defined as:

Dc(v) =
1

∑t∈G dG(v,t)
, (1)

where dG(v,t) is the minimum distance from vertex v
to vertex t (the sum of the costs of relationship of all
edges in the shortest path from v to t). The distance
centrality can be interpreted as a measurement of the
influence of a vertex in a graph: the higher its value,
the easiest it is for that vertex to spread information
into that network. Let’s observe that when a given ver-
tex is “far” from the others, it has a low degree of rela-
tionship (i.e. a high cost of relationship) with the rest.
In that case the term ∑t∈G dG(v,t) will be high, mean-
ing that the vertex is not placed in a central position in
the network, being its distance centrality low. This pa-
rameter can be used to identify modules or commiters
which are well related in a project.

• Betweenness centrality of a vertex [4, 2]: The be-
tweenness centrality of a vertex Bc is a measurement
of the number of shortest paths traversing that partic-
ular vertex. Given a vertex v and a graph G, it can be
defined as:

Bc(v) = ∑
s �=v�=t/inG

σst(v)
σst

, (2)

102

Degree
0 50 100 150 200 250 300 350 400 450

0

20

40

60

80

100

120

Figure 1. Distribution of the degrees of com-
miters in Apache, circa February 2004

where σst(v) is the number of shortest paths from s to
t going through v, and σst is the total number of short-
est paths between s and t. The betweenness centrality
of a vertex can be interpreted as a measurement of the
importance of a vertex in a given graph, in the sense
that vertices with a high value of this parameter are in-
termediate nodes for the communication of the rest. In
the case of weighted networks, multiple shortest paths
between any pair of vertices are highly improbable.
So, the term σst (v)

σst
takes usually only two values: 1,

if the shortest path between s and t goes through v,
or 0 otherwise. Therefore, the betweenness centrality
is just a measurement of the number of shortest paths
traversing a given vertex.

• Clustering coefficient of a vertex [14]: The cluster-
ing coefficient c of a vertex measures the connectiv-
ity of its direct neighborhood. Given a vertex v in a
graph G, it can be defined as the probability that any
two neighbors of v be connected. Hence

c(v) =
E(v)

kv(kv −1)
, (3)

where kv is the number of neighbors of v and E(v) is
the number of edges between those neighbors. A high
clustering coefficient in a network indicates that this
network has a tendency to form cliques. Observe that
the clustering coefficient does not consider the weight
of edges.

• Weighted clustering coefficient of a vertex [10]: The
weighted clustering coefficient cw of a vertex is an
attempt to generalize the concept of clustering coef-
ficient to weighted networks. Given a vertex v in a
weighted graph G it can be defined as:

cw(v) = ∑
i�= j∈NG(v)

wi j
1

kv(kv −1)
, (4)

cc (clustering coeficient)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

5

10

15

20

25

30

cc (clustering coeficient)
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

0

20

40

60

80

100

120

Figure 2. Clustering coefficient of modules
in Apache (top) and GNOME (bottom), circa
February 2004 (distribution)

where NG(v) is the neighborhood of v in G (the sub-
graph of all vertices connected to v), wi j is the de-
gree of relationship of the link between neighbor i and
neighbor j (wi j = 0 if there are no link), and kv is the
number of neighbors. The weighted clustering coeffi-
cient can be interpreted as a measurement of the local
efficiency of the network around a particular vertex.
For our networks, remark that the term ∑i�= j∈NG(v) wi j

can be seen as the total degree of relationship in the
neighborhood of vertex v, while 1

kv(kv−1) is the total
number of relationships that could exists in that neigh-
borhood.

5 Case studies: Apache, GNOME and KDE
modules

Apache, GNOME and KDE are all well known libre soft-
ware projects, large in size (each well above the million
lines of code), in which several subprojects (modules) can
be identified. They have already been studied (for instance
in [11] and [8]) from several points of view. We have used
them to apply our methodology, and in this section some re-
sults of that application are shown (just an example of how
a project can be characterized from several points of view).

In figure 1 the distribution of the degree of relationship
for each commiter in the Apache project is shown as an ex-

103

Weighted clustering coeficient
0 5000 10000 15000 20000

0

5

10

15

20

25

30

Weighted clustering coeficient
0 20000 40000 60000 80000 100000 120000 140000

0

50

100

150

200

250

Weighted clustering coeficient
0 20000 40000 60000 80000 100000

0

2

4

6

8

10

12

14

Figure 3. Weighted clustering coefficient of
modules in Apache (top), GNOME (middle),
and KDE (bottom), circa February 2004 (dis-
tribution)

ample of how developers can be characterized by how they
relate to each other. It is easy to appreciate how that dis-
tributions shows two peaks, one between 20-40 and other
around 70-90. Only a handful of developers has direct rela-
tionship with more than 200 companions.

In figure 2 the distribution of the clustering coefficient of
modules in Apache and GNOME is compared. Although in
both cases there is a peak in 1 (meaning that in many cases
the direct neighborhood of a module is completely linked
together), there is an interesting peak in GNOME around
0.77, which should be studied but probably corresponds to
a sparse-connected cluster.

Figure 3 shows how, despite differences in the distri-
bution of the clustering coefficient, the distribution of the
weighted clustering coefficient has more similar shapes,
with a quick rise from zero to a maximum, and a slower,
asymptotic decline later. This would mean than in the three
projects most nodes (those near the peak) are in clusters
with a similar interconnection structure.

As a final example, on the evolution of a project, fig-
ure 4 shows the distribution of the connection degree of four
snapshots of the Apache project. It can be seen how there is
a tremendous growth in the connection degree of the most
connected module (from 34 in 2001 to more than 100 in
2004), while the shape of the distribution changes over time:
from 2001 to 2002 a two-peak structure develops, which
slowly changes into a one-peak distribution through 2003
and 2004.

For lack of space we do not offer it here, but the anal-
ysis of the top modules and developers for each parameter
considered gives a lot of insight on which ones are helping
to maintain the projects together, to deal with information
flows, or are the aggregators of clusters.

6 Conclusions and further work

In this paper we have shown a methodology which ap-
plies affiliation network analysis to data gathered from CVS
repositories. We also offer some examples of how it can
be applied to characterize libre software projects. From a
more general point of view, we have learned (demonstra-
tion not shown in this paper) that in the three analyzed cases
(Apache, GNOME and KDE), both the commiters and the
modules networks are small-world networks, which means
that all the theory developed for them applies here.

Our group is still starting to explore the many paths open
by this methodology. Currently, we are interested in ana-
lyzing a large number of projects, looking for correlations
which can help us to make estimations and predictions of
the future evolution of projects. We are also looking for
characterizations of projects based on the parameters of the
curves that interpolate the distributions of the parameters
we are studying. And of course, applying other techniques

104

Degree
0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

8

Degree
0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

Degree
0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

10

12

14

Degree
0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

Figure 4. Connection degree of modules in
Apache circa February from 2001 (top) to 2004
(bottom) (distribution)

usual in small-world and other social networks.
We feel that these research paths will allow for the more

complete understanding of how libre software projects dif-
ferentiate from each other, and also will help to identify
common patterns and invariants.

References

[1] R. Albert, A. L. Barabsi, H. Jeong, and G. Bianconi. Power-
law distribution of the world wide web. Science, 287, 2000.

[2] J. Anthonisse. The rush in a directed graph. Technical report,
Stichting Mathemastisch Centrum, Amsterdam, The Nether-
lands, 1971.

[3] Cancho and R. Sole. The small world of human language.
Proceedings of the Royal Society of London. Series B, Bio-
logical Sciences, 268:2261–2265, Nov. 2001.

[4] C. Freeman. A set of measures of centrality based on be-
tweenness. Sociometry 40, 35-41, 1977.

[5] D. Germn and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, Portland, Oregon, 2003.

[6] R. A. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and tools. First
Monday, 2003.
http://www.firstmonday.dk/issues/issue8_4/
ghosh/index.html.

[7] V. F. Greg Madey and R. Tynan. The open source develop-
ment phenomenon: An analysis based on social network the-
ory. In Americas Conference on Information Systems (AM-
CIS2002), pages 1806–1813, Dallas, TX, USA, 2002.
http://www.nd.edu/˜oss/Papers/amcis_oss.pdf.

[8] S. Koch and G. Schneider. Effort, cooperation and coordina-
tion in an open source software project: Gnome. Information
Systems Journal, 12(1):27–42, 2002.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
The web and social networks. IEEE Computer, 35(11):32–
36, 2002.

[10] V. Latora and M. Marchiori. Economic small-world behav-
ior in weighted networks. Euro Physics Journal B 32, 249-
263, 2003.

[11] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[12] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[13] G. Sabidussi. The centrality index of a graph. Psychometirka
31, 581-606, 1996.

[14] D. Watts and S. Strogatz. Collective dynamics of small-
world networks. Nature 393, 440-442, 1998.

105

Mining a Software Developer’s Local Interaction History

Kevin A. Schneider, Carl Gutwin, Reagan Penner and David Paquette
Department of Computer Science, University of Saskatchewan

57 Campus Drive, Saskatoon, SK S7N 5A9 Canada
{kas, gutwin, rpenner}@cs.usask.ca, dnp972@mail.usask.ca

Abstract

Although shared software repositories are commonly
used during software development, it is typical that a soft-
ware developer browses and edits a local snapshot of the
software under development. Developers periodically check
their changes into the software repository; however, their
interaction with the local copy is not recorded. Local in-
teraction histories are a valuable source of information and
should be considered when mining software repositories.

In this paper we discuss the benefits of analyzing local
interaction histories and present a technique and prototype
implementation for their capture and analysis. As well, we
discuss the implications of local interaction histories and
the infrastructure of software repositories.

1. Introduction

We are interested in mining local interaction histories of
a software development team to help coordinate their activi-
ties and to coordinate the change and use of project artifacts.

A software developer’s interaction with a software repos-
itory includes editing source code but also involves actions
to browse or locate source code. We are interested in record-
ing and analysing this interaction, which we refer to as the
developer’s local interaction history. Our principle motiva-
tion is to use this information to support awareness in team
based software development.

Developers normally change a local copy of the software
under development. Periodically, the developer will syn-
chronize their changes with the shared software repository.
Although a portion of the developers’ interaction with the
local software artifacts may be recorded for the purpose of
undoing changes and for recovering from previously saved
versions, the interaction is not recorded in the shared reposi-
tory and is incomplete when considering awareness support.

In our approach, as a developer changes software ar-
tifacts the different versions are recorded in a shared
‘shadow’ repository and analysed with respect to the struc-

ture of the software. Hierarchical containment of language
entities (the structure of the software) is modeled separately
so that we can track changes across the language entities.
For example, we can track changes to a method across
classes and packages. We use this strategy to monitor API
(application programming interface) change and usage.

Mining local interaction histories has a number of poten-
tial applications, including:

• Coordinating team member activities. Monitoring
changes to an API and monitoring API usage may be
useful in supporting team awareness during software
development. (The focus of this paper and our current
prototype implementation.)

• Identifying refactoring patterns. Analysing local in-
teraction histories may be useful for identifying novel
refactoring patterns and coordinating refactorings that
affect other team members.

• Coordinating multiple file undos. Tracking changes
with respect to the structure of a software system may
provide software development guidance when undoing
a set of changes.

• Identifying browsing patterns. Local interaction his-
tory includes the developer’s searching, browsing and
file access activities. Analysing this browsing inter-
action may be useful in supporting a developer locate
technical expertise or exemplars.

• Project Management. Recording the changes a de-
veloper makes to software with respect to communica-
tion logs or project plans may prove to be fruitful for
organizing and managing a software project.

The next section discusses background and related work,
focusing on coordination and communication issues in soft-
ware development. Subsequent sections describe our ap-
proach and prototype. The implications of mining local in-
teraction histories and the infrastructure of software reposi-
tories is discussed with our future research directions in the
paper’s conclusion.

106

2. Background and Related Work

Collaborative software development presents difficult
coordination and communication problems, particularly
when teams are geographically distributed [6, 8, 10, 12, 13].
Even though projects can be organized to make individual
developers partly independent of one another, dependencies
cannot be totally removed [10]. As a result, there are of-
ten situations where team members duplicate work, over-
write changes, make incorrect assumptions about another
person’s intentions, or write code that adversely affects an-
other part of the project.

These problems often occur because of a lack of aware-
ness about what is happening in other parts of the project.
Unfortunately, current development tools and environments
do not make it easy to maintain awareness of others’ activ-
ities [1]. Awareness is a design concept that holds promise
for significantly improving the usability of collaborative
software development tools.

2.1. Collaboration in Software Development

Collaboration support has always been a part of dis-
tributed development – teams have long used version con-
trol, email, chat groups, reviews, and internal documenta-
tion to coordinate activities and give and gather information
– but these solutions generally either represent the project
at a very coarse granularity (e.g. CVS [3]), require con-
siderable time and effort (e.g. reading documentation), or
depend on people’s current availability (e.g. IRC).

Researchers in software engineering and CSCW have
found a number of problems that still occur in group
projects and distributed software development. They found
that it is difficult to: determine when two people are making
changes to the same artifacts [10]; communicate with others
across timezones and work schedules [6]; find partners for
closer collaboration or assistance on particular issues [12];
determine who has expertise or knowledge about the differ-
ent parts of the project [13]; benefit from the opportunis-
tic and unplanned contact that occurs when developers are
colocated [8]. As Herbsleb and Grinter [8] state, lack of
awareness – “the inability to share at the same environment
and to see what is happening at the other site” (p. 67) is one
of the major factors in these problems.

2.2. Group Awareness

In any group work situation, awareness of others pro-
vides information that is critical for smooth and effective
collaboration. This is group awareness: the understanding
of who is working with you, what they are doing, and how
your own actions interact with theirs [7]. Group awareness
is useful for many of the activities of collaboration – for

coordinating actions, managing coupling, discussing tasks,
anticipating others’ actions, and finding help.

In a software project, knowledge of others’ activities,
both past and present, has obvious value for project man-
agement, but developers also use the information for many
other purposes that assist the overall cohesion and effec-
tiveness of the team. For example, knowing the specific
files and objects that another person has been working on
can give a good indication of their higher-level tasks and
intentions; knowing who has worked most often or most re-
cently on a particular file indicates who to talk to before
starting further changes; and knowing who is currently ac-
tive can provide opportunities for real-time assistance and
collaboration.

On software projects, awareness information is currently
difficult to obtain from development environments: al-
though some of the facts exist (e.g. from CVS logs) there
are currently no low-effort means for gathering them. A few
research systems do show awareness information (particu-
larly TUKAN [12] and Plantı́r [11]), but little support exists
in more widespread environments.

3. Project Watcher

ProjectWatcher is a prototype system that gathers infor-
mation about project artifacts and developer’s actions with
those artifacts, and that visualizes this awareness informa-
tion in the Eclipse [5] development environment (Figure 1).
ProjectWatcher consists of two main parts – the mining
component and the visualization plugins.

Figure 1. ProjectWatcher in Eclipse. Visual-
izations are at lower left and upper right.

The mining component analyzes the source code of a
project to produce facts for use by the ProjectWatcher visu-
alization plugin. The mining component gathers informa-
tion on the structure of the project and also on the current
and historical activity of the project team members.

107

To be able to gather developer activity information, a
shadow CVS repository of the project is maintained (Fig-
ure 2). User edits are auto-committed to the shadow repos-
itory as developers edit source code files. Although Eclipse
provides a local history of changes, we require that the
changes be available to other developers in the software
development team and so publishing them in the shadow
repository gives us that facility. As well, we are able to
record actions along with changes to software artifacts, and
we are able to commit changes at different time intervals.

!"#$%&
’(!

)*+%,-.%/0

1/%2*3.
’(!4

)*+%,-.%/0

5,*/46$-.
7#3.8#,*

5,*/46$-.47#3.
69./#3.%/

:;.%<3%= = -.,

5,*/43"*3>%;.4#?$4
3%= = -.,

!"#$%&
’(!

)*+%,-.%/0

1/%2*3.
’(!4

)*+%,-.%/0

5,*/46$-.
7#3.8#,*

5,*/46$-.47#3.
69./#3.%/

:;.%<3%= = -.,

5,*/43"*3>%;.4#?$4
3%= = -.,

Figure 2. Capturing User Edits. A shadow
software repository is used to record the ac-
tivities of a software developer.

The user edits mining component analyzes the shadow
CVS repository to obtain facts about who has been edit-
ing the class methods and when. A version of a file is cre-
ated each time it is auto-committed to the shadow reposi-
tory. The mining component analyses the differences be-
tween versions to track API usage and API change.

The mining component is implemented in two stages
and may either be run on the shadow software repository
or on the shared software repository (Figure 3). Stage one
uniquely names all entities in the project while extracting
the entity and relationship facts. This process is accom-
plished with a TXL program using syntactic pattern match-
ing [2, 4]. At this point, the method call facts are not
uniquely identified since we do not have sufficient infor-
mation to identify which package or class the method being
called belongs to. This resolution is accomplished by stage
two, the method call resolver.

The method call resolver extracts facts from the project
source code and integrates them with the facts extracted
from stage one. Next, the method call facts are analyzed
to determine which package and class the method that was
called belongs to. This process involves resolving the types
of variables and return types of methods that are passed as
arguments to method calls. The types of all the arguments
are identified, and then scope, package, class, and method
facts are analyzed to determine which package and class the
method belongs to. To resolve calls to the Java library, the
full Java API is first processed by the ProjectWatcher min-

!"#"$%&’$(")*+

,-. /01*1
(")*2"+1

&"3*4"0
(")*2"+1

!"#"$&3-51)*
6-73)1$,-81

(")*$9:*3")*-3
;<=>?

@ 1*A-8$,"00$B1+-0#13
;!"#"?

!"#"$%&’$(")*+

,-. /01*1
(")*2"+1

&"3*4"0
(")*2"+1

!"#"$&3-51)*
6-73)1$,-81

(")*$9:*3")*-3
;<=>?

!"#"$%&’$(")*+

,-. /01*1
(")*2"+1

&"3*4"0
(")*2"+1

!"#"$&3-51)*
6-73)1$,-81

(")*$9:*3")*-3
;<=>?

@ 1*A-8$,"00$B1+-0#13
;!"#"?

Figure 3. Mining User Edits. In a two stage
process, package, class and method facts are
extracted and combined with Java API facts.
The facts are used by the visualization com-
ponent to convey API use and API change
information.

ing component (this is only done once for all projects). Not
all calls may be resolved, however for our purpose the ac-
curacy of the method call resolver is adequate.

The complete factbase contains uniquely identified facts
indicating all packages, classes, methods, variables, and re-
lationships for a Java project and all user edits. These facts
are used by the visualization plugin to show activity and
proximity information. The time and space required for fact
extraction and factbase storage depends on the size of the
code. For example, ProjectWatcher has been tailored for
Java, and mining the Java Development Kit 1.4.1 results in
202 package facts, 5,530 class facts, 47,962 method facts,
and 106,926 call facts.

4. Awareness Visualization

4.1. Activity Awareness

ProjectWatcher visualizes team members’ past and cur-
rent activities on project artifacts. The visualization uses
the ideas of interaction history [9] and overviews: the in-
teraction history is a record all of the actions that a person
undertakes with a project artifact (gathered unobtrusively
by the mining component as people carry out their nor-
mal tasks); the overview representation is a compact display
of all the project artifacts, that can be overlaid with visual
information about the interaction history. Although some
tools such as CVS front-ends do have limited visualization
(e.g. by colour on the project tree), our goal here is to col-
lect much more information about interaction, and provide
much richer visualizations that will allow team members to
gather more detailed awareness information.

ProjectWatcher plugins use the extracted fact base to cre-
ate a visual model of what each developer is doing in that

108

Figure 4. Project overview plugin showing
packages (grey bars) and classes within each
package (coloured blocks). Colour indicates
who edited the class most recently. Black
marks inside class blocks chart edits since
project start.

project space. In the overview plugin (Figure 4), project
artifacts are shown in a simple stacked fashion that dis-
plays packages, files, classes, and methods. Artifacts are
always stacked by creation date, so that their location in the
overview can over time be learned by the user. On this basic
(but space-saving) representation, we overlay awareness in-
formation. First, each developer is assigned a unique colour,
and this colour can be added to the blocks in the overview
based on a set of filters. Common filters include who has
modified artifacts most recently, or modified them most of-

ten. Second, we show a summary of the activity history for
each artifact with a small bar graph drawn inside the object’s
rectangle; bars represent amount of change to the class since
its creation. Finally, more information about an artifact can
be obtained by holding the cursor over a rectangle: for ex-
ample, the name of the class and a more detailed bar graph,
along with details about the state of the class compared to
the CVS repository.

4.2. Proximity Awareness

Following on from a basic understanding of others’ ac-
tivities is the question of proximity – that is “who is working
near to me?” in terms of the structures and dependencies of
the software system under development.

The notion of distance to another person has not been
studied extensively, although it has been explored previ-
ously in Schümmer’s TUKAN [12]. We have developed
a visualization tool (Figure 5) that makes it easier to see
proximity-based groups. Once actions are mapped to the
dependency structure, the graph is presented in visual form
with people’s locations and proximities made explicit.

Figure 5. ProjectWatcher graph view

109

5. Conclusion

We have presented a system for mining local interaction
histories to help address some of the awareness problems
experienced in distributed software development projects.
The system observes a software developer’s activities in a
software development environment and records those ac-
tions in relation to the artifact-based dependencies extracted
from source code. Visualization plugins represent this infor-
mation for developers to see and interact with. Although our
prototypes have limitations (particularly in terms of project
size), they can provide developers with much-needed infor-
mation about who is working on the project, what they are
doing, and how closely linked two developers are.

Our experience suggests a number of directions for min-
ing software repository research, including:

• Content. Research on awareness often monitors a
software development teams’ interaction with a shared
software repository. Unfortunately, the granularity of
check-in and check-out is usually too coarse to ade-
quately monitor change. This suggests that the content
of shared software repositories should also include lo-
cal interaction histories.

• Rapid incremental processing. For our purposes it
is important that the computation of source facts and
their resolution be relatively efficient to support inter-
active visualizations.

• Robustness. Our analysis may process source that is
currently being edited and so the source may not be
well-formed. We require that fact extraction and reso-
lution needs to support analysis under ongoing change.

Our future plans with the system involve both improve-
ments and new directions. With the current system, we plan
to continue refining our representations and filters to deter-
mine how the information can be best presented to develop-
ers. We currently visualize source code that is in the pro-
cess of being edited, and therefore the source code may be
inconsistent, incomplete and frequently updated. We are
investigating techniques for improving the robustness and
performance of the mining component and visualizing par-
tial information given these circumstances.

Longer range plans involve extensions to the basic ideas
of project artifacts and interaction histories. We plan to
extend our artifact collection to include entities other than
those in source code. Many other project artifacts exist, in-
cluding communication logs, bug reports and task lists. We
hope to establish additional facts to model these artifacts
and to use the new artifacts and their relationships in the
awareness visualizations.

We can also extend our use of the interaction histories
to other areas. For example, recording developers’ interac-

tion history and extracting method call facts from the source
code provides us with basic API usage information. We
can present this information in a future plugin to provide
awareness of technology expertise. A developer wishing to
know how to use a particular Java API feature may be pre-
sented with a list of developers who have used the feature
frequently or recently. Alternatively, the visualization plu-
gin may present this information overlaid on the project’s
dependency structure.

Acknowlegment

The authors would like to thank IBM Corporation for
supporting this research.

References

[1] M. C. Chu-Carroll and S. Sprenkle. Coven: brewing better
collaboration through software configuration management.
In Proceedings of the 8th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 88–
97. ACM Press, 2000.

[2] J. R. Cordy, T. R. Dean, A. Malton, and K. A. Schnei-
der. Source transformation in software engineering using
the TXL transformation system. Journal of Information and
Software Technology, 44(13):827–837, October 2002.

[3] CVS. Concurrent Versions System. Available online at
http://www.cvshome.org/.

[4] T. R. Dean, J. R. Cordy, K. A. Schneider, and A. Malton. Us-
ing design recovery techniques to transform legacy systems.
In ICSM, pages 622–631, 2001.

[5] Eclipse. Available online at http://www.eclipse.org/.
[6] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geogra-

phy of coordination: dealing with distance in r&d work. In
Proceedings of the international ACM SIGGROUP confer-
ence on Supporting group work, pages 306–315, 1999.

[7] C. Gutwin and S. Greenberg. A descriptive framework of
workspace awareness for real–time groupware. Computer
Supported Cooperative Work, 11(3):411–446, 2002.

[8] J. D. Herbsleb and R. E. Grinter. Architectures, coordina-
tion, and distance: Conway’s law and beyond. IEEE Soft-
ware, pages 63–70, 1999.

[9] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless.
Edit wear and read wear. In Proceedings of CHI’92, pages
3–9. ACM Press, 1992.

[10] R. E. Kraut and L. A. Streeter. Coordination in software de-
velopment. Communication of the ACM, 38(3):69–81, 1995.

[11] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: raising
awareness among configuration management workspaces.
In Proceedings of ICSE 2003, pages 444–454, 2003.

[12] T. Schümmer. Lost and found in software space. In Pro-
ceedings of the 34th HICSS, 2001.

[13] B. Zimmermann and A. M. Selvin. A framework for assess-
ing group memory approaches for software design projects.
In Proceedings of the conference on Designing interactive
systems, pages 417–426. ACM Press, 1997.

110

Software Reuse

LASER: A Lexical Approach to Analogy in Software Reuse

Rushikesh Amin, Mel Ó Cinnéide and Tony Veale
Department of Computer Science,

University College Dublin,
Belfield, Dublin 4,

Ireland.
{rushikesh.amin,mel.ocinneide,tony.veale}@ucd.ie

Abstract

Software reuse is the process of creating a software sys-
tem from existing software components, rather than creat-
ing it from scratch. With the increase in size and complex-
ity of existing software repositories, the need to provide in-
telligent support to the programmer becomes more press-
ing. An analogy is a comparison of certain similarities
between things which are otherwise unlike. This concept
has shown to be valuable in developing UML-level reuse
techniques. In the LASER project we apply lexically-driven
Analogy at the code level, rather than at the UML-level,
in order to retrieve matching components from a repository
of existing components. Using the lexical ontology Word-
Net, we have conducted a case study to assess if class and
method names in open source applications are used in a se-
mantically meaningful way. Our results demonstrate that
both hierarchical reuse and parallel reuse can be enhanced
through the use of lexically-driven Analogy.

1. Introduction

Software reuse, in its broadest terms, has been viewed as
the reapplication of knowledge from one software system
to another [4]. Software reuse reduces development time
and cost while improving quality. Most engineering disci-
plines are based on the reuse concept, from components to
formulas and ideas themselves [9]. Nonetheless, in terms
of reliability and maintenance effort, software engineering
compares badly to other, more physical forms of engineer-
ing such as chip design, which ultimately employ the same
logical concepts.

In general, a reuse environment comprises a repository
of reusable components, together with a mechanism for
their retrieval, adaptation and integration. One model of
software reuse is the so-called 3C model, involving the no-
tions of concept, content, and context [10]. In this model,

the software engineer must specify the conceptual require-
ments of the component they are seeking. Components
are described in terms of their content (data structure used,
etc.). In the description of both content and concept, it
may also be necessary to provide contextual information.
Such an approach has the disadvantage that it involves con-
siderable work in specifying this additional information.
Also, the repository of reusable components will continue
to grow, thus making the task of finding and choosing an
appropriate component more difficult [6].

Analogy involves a structural comparison of two con-
cepts that appear substantially different on the surface but
which exhibit important causal or semantic symmetries.
Computational models of analogy have shown themselves
to be valuable in the development of UML level reuse tech-
niques; examples include ReBuilder [2, 3]. Analogy typi-
cally has both a linguistic and a conceptual dimension, the
latter communicated by the former. Words and their mean-
ings thus play an important role in the effectiveness and
comprehension of analogies. In this research we examine
whether software artifacts like Java programs exhibit the
same reliance on lexical expression for their meaning. It
seems clear that good developers choose class, method and
variable names that are lexically expressive about the goals
of the code. If this is true, we can apply lexical analogy
techniques at code level rather than UML-level in order to
retrieve matching components from the reuse environment.

The object-oriented paradigm facilitates reuse of code
by packaging the most reusable structure and behaviours
into distinct classes. The programmer can extend the basic
functionality of these classes and/or modify it to get the de-
sired functionality. Our research currently focuses on soft-
ware written in the Java programming language for a num-
ber of reasons. Firstly, Java provides an elegant means of
encouraging class creation, extension, composition and ab-
straction. Secondly, various conventions for Java code sug-
gest that the linguistic elements of Java programs, such as
method, class and variable names, are more likely to cor-

112

respond to meaningful words or phrases in a natural lan-
guage like English. As such, the innovative core of this re-
search project is the belief that natural language techniques
can be productively applied to artificial language constructs
like software code to yield a meaningful conceptual repre-
sentation. By focusing on the actual code level of a new
software design rather than the abstract component level,
we can exploit a rich vein of lexical-driven opportunities for
reasoning about a developer’s goal and requirements. While
it is true that the general structure of software code does
not conform to a natural-language grammar, most modern
programmers do employ many of the principles of natural
language expression in the naming of classes and methods.

In this paper we present our ongoing work on the appli-
cation of Analogy to the software reuse domain. We have
completed a preliminary study by parsing JRefactory [1], an
open source refactory tool, to determine if class names and
method names follow the natural language technique. We
also researched how hierarchical reuse and parallel reuse
can be enhanced using a lexically-driven analogical ap-
proach. As a basis for our work we are using WordNet,
a broad coverage knowledge-base of the English lexicon.
In the next section we introduce related work, while in sec-
tion 3 a brief description of WordNet is given. Section 4
describes analogical reasoning as it is used in LASER. A
case study is presented in section 5 and finally, directions
for future research and conclusions are discussed in section
6.

2. Related Work

ReBuilder [2, 3], a software tool being developed in the
AI Lab of the University of Coimbra, is innovative in the
way it uses WordNet to index and retrieve software cases.
ReBuilder allows analogical retrieval and mapping between
UML descriptions of software systems, and uses analogical
transfer to flesh out a new software design based on struc-
tural parallels with a pre-existing design. Developers ex-
plicitly associate software designs with one or more nodes
in the taxonomy, so when the new development project is
initiated, the taxonomy can be searched for similar prece-
dents. However, the benefits of this reuse scheme can only
be reaped by those developers who take the time to tell Re-
Builder how to appropriately annotate and index their soft-
ware for future retrieval. We also exploit WordNet, but at a
much finer level of analysis. By prying into the internal lex-
ical structure of software components, to analyse the names
given to the methods and classes and relate these to concepts
in the WordNet taxonomy, we create a whole spectrum of
new possibilities.

CodeFinder, together with PEEL (Parse and Extract
Emacs Lisp), is a software tool that supports the process of
finding components for reuse [5]. Repositories are initially

seeded semi-automatically with structure and index terms
by PEEL. These retrieval structures are used by CodeFinder
to allow the user to find semantically-related components.
The initial retrieval structures are likely to be incomplete,
but CodeFinder also enables the user to add new structure
and index terms to the repository to improve future compo-
nent retrieval. In this way, CodeFinder supports the user in
finding reusable components in less-than-perfect repository
structures.

3. WordNet

WordNet, a broad coverage knowledge base of the En-
glish lexicon from Princeton University [8], is the linguistic
core underpinning LASER. Language is inherently ambigu-
ous, especially at the lexical level, and so WordNet is built
around the notion of a synset. A synset is an indirect means
of denoting a concept or specific word sense, by providing
a set of synonyms that can each denote that sense. For our
initial experiments with LASER we exploit the large num-
ber of synsets defined by WordNet, as well as two seman-
tic relations, is-a and part-of, that WordNet uses to con-
nect these synsets. For example, Student is-a Person
and Classroom is part-of School. WordNet will serve
as the knowledge-base component in LASER, allowing
the system to predict potential parent classes using lexico-
conceptual knowledge. For example WordNet can be used
to lookup all synsets containing the word client to find
synonyms and hypernyms like Customer and Person, as
well as neighbours like Patient. This will allow LASER
to establish reuse connections between a new class called
Client and existing classes called Customer, Person
or Patient.

4. Analogical Reasoning in LASER

Analogy in its simplest form can be defined as a compar-
ison between pairs and is widely used as a problem solving
method. The “Structure Mapping” approach in ReBuilder
views analogy as a suggestion of a class diagram based on
the query diagram [2, 3]. As its name suggests, structure
mapping does not consider the lexical labels assigned to ele-
ments in the each structure, assuming instead that the mean-
ing of these elements derives not from names but from their
structural relationships with other elements. However, in
object-oriented code, class structures are usually annotated
with meaningful lexical labels for a reason: to allow human
comprehension and insight [7]. Analogical reasoning can
be used in two of the most useful reuse techniques in ob-
ject oriented programming, hierarchical reuse and parallel
reuse. The first, hierarchical reuse, occurs when one class
is an extension of another class. For example, consider a

113

context in which a programmer is about to extend a super
class for a class called Client.
public class Client extends

By using analogical reasoning we can implement different
strategies to suggest new superclass for the class Client.
Using WordNet as a knowledge base, we can suggest a su-
perclass that has similar meaning as Client, for example
Person, Customer etc.

Analogical reasoning also facilitates the second, and the
most ambitious, form of reuse, parallel reuse, in which the
system recognizes that a developer is about to implement
a component that already exists in a similar form. For ex-
ample, analogical reasoning can be used to determine that a
new class, Client, is structurally similar to another class
called Patient, from another application. This recogni-
tion of this similarity is both lexical and structural: lexical
in the sense that Client and Patient are taxonomically
similar terms in WordNet, occupying neighboring area of
the taxonomy under a common parent class called Person;
and structural in the sense that similarity can be measured
by recognizing common class members (such as variables
with lexically similar names and types) and by recognizing
the lexically similar names of any superclasses.

A major use of analogical reasoning is to perform ana-
logical transfer (also called candidate inference), in which
a target structure is enriched with structure that is mapped
from a more elaborate source. In most structure-mapping
systems, transfer is performed using structural criteria only,
which can lead to incongruous completion patterns. We in-
tend to conceptually ground the transfer process by making
it lexically-driven: a combination of lexical and structural
evidence will be required to motivate any transfer of struc-
ture from a past design to the current development context.

In order to explain the potential of analogical reasoning
in software reuse, we present an example of how such rea-
soning might be performed. Consider a context, in which
a developer begins to create an application for a School,
starting with the creation of a class called Student. This
nascent basis may allow for an existing software design for
a Hospital to be retrieved, based on the similarity (in lex-
ical and structural terms) of the Student and Patient
classes. Structure-mapping between the nascent elements
of the school system and the existing case for a hospital
might then suggest that the school system needs classes
for Desk, Room, Class, Teacher, Principal
and TeachingAssistant. LASER may create stubs
for these classes automatically and add them to the cur-
rent project specification. However, while there is lexical
evidence for the utility of a Room class in the School do-
main, there is no such evidence for the necessity of a Desk,
Class, Nurse or even Doctor class. Therefore, LASER
may also suggest to the developer to create a Room class
only.

The structural evidence for a Nurse, Doctor and Bed
class is not entirely discarded, however: it is merely put
to one side to await a more appropriate reuse opportunity.
For example, should the developer begin to create a class
for Teacher, lexical analysis using WordNet will reveal
that this class corresponds to a known taxonomic subordi-
nate of Professional, as does Doctor. At this point
it becomes sensible for LASER to suggest to the developer
that the Doctor class be reused. Since this is an exam-
ple of parallel reuse (Teachers are like Doctors, but
not a kind of Doctor), LASER can suggest two alternative
strategies: first, a new generic class Professional can
be created, and the bulk of the Doctor class can be lifted to
this new parent class, so that it can be reused via class exten-
sion by the new class Teacher; or secondly, the structure
of the Doctor class can be directly imported to provide a
code skeleton around which to create the Teacher class.
In a similar way, the class for Bed can be reused as the ba-
sis for a new class Desk, and if the conceptual structure is
available to make such a suggestion, Nurse can be reused
as the basis for TeachingAssistant.

5. Case Study

In this section we demonstrate that hierarchical reuse
and parallel reuse in object oriented code can be enhanced
through lexically-driven analogy. Our fundamental assump-
tion is the belief that most programmers follow natural lan-
guage conventions in naming classes and methods. As a pi-
lot study, the JRefactory package [1], which contains 1259
classes, was parsed for the purpose of collecting and stor-
ing class and method names. We used WordNet to lexi-
cally ground class names and method names used by the
programmer. The distinction between names that are lin-
guistically sensible and those that are not is a fuzzy one:
many names contain a linguistic root that can be extracted
with some basic language heuristics. To calculate the ac-
curacy of such a heuristic WordNet match with a particular
class or method name, we initially decompose the name us-
ing the capitalisation convention used as standard in Java
We have also included some common Java words in our ex-
periment that are not part of standard WordNet database:
AST, int, etc. An example of how we interpret a class name
is as follow:

Class Name Match after decomposition Average match

MyBeerCase My=100% Beer=100% Case=100% 100%

MyBeerPZK My=100% Beer=100% PZK=0% 66.66%

Table 1: Average accuracy match for each class with
WordNet

114

Once names have been decomposed following the cap-
italisation convention, we then compare each component
word against the WordNet synset index and calculate an
average accuracy for each name as follows:

Pavg =
N∑

i=1

(fe/N) (1)

Where Pavg is Accuracy of match per class, fe is accuracy
of match with WordNet for each Word and it could be
either 0 or 100 and N=Number of Words.

For MyBeerCase it is (100+100+100)/3=100%.
For MyBeerPZK it is, (100+100+0)/3= 66.66%. The final
result is calculated as follows.

Ravg =
N∑

i=1

(Pavg/N) (2)

Where Ravg is the average accuracy of percentage match
with WordNet.
Pavg is Accuracy of match per class and N is Total number
of class,1259 in this case.
The following graphs depict the result of these techniques
applied to JRefactory as a whole:

Figure 1. Class Name match with WordNet

The graph above displays the percentage of class names
that correspond to WordNet lexical entries. Encouragingly,
out of the total number of 1259 classes, an average match
of 84.96% with WordNet entries was calculated. We group
class name matches into four categories as shown in figure
1. 65.66%, of the classes had a 100% match with WordNet.
This was significantly greater than the 0.6% of classes that
had no match at all with WordNet.

Figure 2 shows the percentage of method names that
correspond to WordNet entries. JRefactory contains 6966
methods, and of these, 74.33% match with WordNet en-
tries. The vast majority (60.70%) achieves a 100% match

Figure 2. Method Name Match with WordNet

with WordNet; while very few (2.97%) has no discernable
mapping to WordNet at all.

Although this is as yet only a pilot study, the results are
very promising as regards the goals the LASER project.
The vast majority of class names and their lexical compo-
nents, and a strong majority of method name components,
are amenable to conceptual annotation using linguistic tech-
niques.

It is not enough that code-level names correspond to
known words; these names must be used in ways consis-
tent with their meaning so that the conceptual basis of the
code can be discerned. Ideally, when subclass and its su-
perclass can both be mapped to WordNet, we should expect
the corresponding synsets to explicitly relate via an is-a re-
lationship.

To test this expectation, we performed another experi-
ment to consider the hypernyms of the lexical labels asso-
ciated with class names. Hypernym is linguistic term for a
word whose meaning includes the meanings of other words,
as the meaning of Transportation includes the mean-
ing of Airplane, Train and Automobile.

To conduct this experiment we parsed 1259 classes from
the open source JRefactory [1] project. We completed
a study to see if the subclass name and its superclass
name have a hypernym relationship or not. We explore
WordNet to conduct this experiment. Results are calculated
as follows: Suppose subclass name is MySchool and
superclass name is Organization. We developed a
technique to decompose the names using the capitalization
standard used in Java. We use WordNet to search for the
hypernym relationship between linguistic-head of subclass
name(School in this case) and those of superclass
name(Organization in this case). If we find hypernym
relationship then we associate it with 100% match other-
wise with 0% match.In this case it is 100% match. Results
are shown in Table 2.

115

Total class Hypernym relationship (%) No relationship (%)

Classes 1259 84.51 15.49

Table 2: Hypernym Relationship between subclass and
superclass

We focused only on subclasses and their associated su-
perclass. We discovered 1259 superclasses in the JRefac-
tory project; of these 84.51% had a hypernym relationship
with their subclasses. Based on this impressive result, we
can argue that a subclass and its superclass are lexically sim-
ilar and if also, future experiment prove structural similarity,
as we suspect, then this presents as with a real opportunity
for future parallel reuse.

6. Conclusion and Future Work

Analogical Reasoning enables a software environment to
provide automated support for software reuse. Lexically-
driven analogy at the code level can be used for better un-
derstanding of the developer’s conceptual goals. In this pa-
per we presented ongoing work on the concept of lexically-
driven analogy. We have shown that both hierarchical and
parallel reuse can be enhanced using lexical similarities of
class names.

Future work on LASER will be focused on the imple-
mentation of techniques for suggesting a super-class for
the current class under development using lexically-driven
analogy. In our next case study we will consider vari-
ables, calculating the part-of relationship between a vari-
able name and its class name. LASER will also facilitate
intelligent refactoring, based on lexico-conceptual under-
standing of the software being developed.

7. Acknowledgement

The authors would like to acknowledge the financial con-
tribution of Faculty of Science, University College Dublin
to this project.

References

[1] JRefactory, An Open Source Refactoring Tool for Java.
http://jrefactory.sourceforge.net.

[2] P. Gomes, F. Pereira, P. Paiva, J. Ferreira, and C. Bento. Case
retrieval of software designs using wordnet. ECAI-2002,
the Fifteenth European Conference on Artificial Intelligence,
2002.

[3] P. Gomes, F. Pereira, P. Paiva, N. Seco, J. Ferreira, and
C. Bento. Experiments on case-based retrieval of software
designs. ECCBR-2002, the 2002 European Conference on
Case-Based Reasoning, 2002.

[4] M. T. Harandi. The role of analogy in software reuse. ACM
symposium on applied computing states of the art and prac-
tice, 1993.

[5] S. Henninger. An evolutionary approach to constructing ef-
fective software reuse repositories. ACM Transactions on
Software Engineering and Methodology (TOSEM), 1997.

[6] C. W. Krueger. Software reuse. ACM Computing Surveys
(CSUR), Volume 24 Issue 2, 1992.

[7] H. E. Letha and G. D. Carl. Automatically identifying
reusable oo legacy code, computer. 1997.

[8] G. A. Miller. WordNet,Cognitive Science Laboratory,
Princeton University.

[9] R. Prieto-Diaz. Status report- software reusability. IEEE
Software, v10 n3, May 1993.

[10] W. Tracz and S. Edwards. Implementation working group
report. Reuse In Practice Workshop, Software Engineering
Institute, Pitt, Pa, 1989.

116

A Case Study on Recommending Reusable Software Components using
Collaborative Filtering

Frank McCarey, Mel Ó Cinnéide and Nicholas Kushmerick
Department of Computer Science,

University College Dublin,
Belfield, Dublin 4, Ireland.

{frank.mccarey, mel.ocinneide, nick} @ucd.ie

Abstract

The demand for quality, highly functional software re-
inforces the need for reusable software components. How-
ever, as repositories of reusable components increase in size
and complexity, the challenge for developers to remain con-
versant with all components becomes greater. This paper
proposes a software recommendation system based on col-
laborative filtering, which has been shown to be effective
in other domains. Based on the usage patterns of existing
classes and the class currently being developed, our sys-
tem proposes a set of reuse candidates to the programmer.
We present the results of our analysis of the usage of Swing
classes in several open-source applications and find that the
collaborative filtering technique is promising in providing
recommendations in this context.

1. Introduction

It is of growing importance for enterprises to have ef-
fective reuse of software components as they invest in de-
veloping and maintaining large software systems [6]. Soft-
ware reuse is an approach to developing systems where ar-
tifacts that already exist are used again. Artifacts vary from
software components to analysis models; this paper concen-
trates exclusively on software components. A component is
a well-defined unit of software that has a published inter-
face and can be used in conjunction with other components
to form larger units [9]. Using existing components can
help develop better, faster and cheaper software systems in
an industrial context, e.g. [8].

Developers are not always eager to use reusable com-
ponents, even if these components may be useful and im-
prove productivity. A Productivity Paradox, as identified in
[5], exists. Although reusable components for solving this
problem are available, most developers are not motivated to

learn these reusable components. The reasons behind the
lack of motivation are discussed in [13]. A developer will
give preference to a suboptimal solution as they perceive
the time and effort to locate and learn components to be
too costly. Even if a developer is willing to reuse a compo-
nent they may not be able to locate it. As the repositories of
components increase, there exists a real challenge for devel-
opers to remain conversant with all components. To assist
software developers in making full use of large component
repositories, information access needs to be complemented
by information delivery [14].

Software repositories contain a wealth of valuable infor-
mation. Usage of software components can be automati-
cally extracted from these repositories. This may then be
used to infer links between components, examine usage pat-
terns of a component or set of components and examine the
relationship between the user task and components used.

This paper describes a recommendation system, based
on a collaborative filtering approach, that allows develop-
ers discover reusable components for the purpose of sup-
porting learning on demand, improving developer produc-
tivity/quality and promoting software reuse. Repositories of
open-source Java code, available from SourceForge [4], are
mined and usage histories of components are automatically
collected. Based on the collaborative filtering approach, we
use collected histories to recommend to the developer a set
of candidate components that may be useful to this individ-
ual developer.

Learn on demand is an approach which allows users to
learn new information or components as they are needed.
Benefits of this style of learning are discussed by [13]. One
such benefit is that the user can immediately see the con-
venience of this reusable component for an authentic prob-
lem situation, thereby increasing the motivation for learn-
ing. The system will proactively provide users with task-
relevant and personalised recommendations by inferring the
need for components based on a collaborative filtering tech-

117

nique.
A basic principle of most collaborative systems is that

most users can be clustered into groups. Users in a group
share preferences and dislikes for particular items and are
likely to agree on future items. A recommendation for a
user is based on the opinions or ratings of other like-minded
users. This principle can be extended to software classes. A
Java class can be considered a user and a software compo-
nent as an item. A Java class may use zero or more compo-
nents. If two Java classes share similar ratings for a compo-
nent, or a set of components, then there is evidence that they
will share the same ratings in future components. Thus a
recommendation for a particular component to a user (Java
class) is based on the rating of like-minded users on this
component.

The rest of the paper is organized as follows. Related
work is introduced in section 2 while section 3 formally
describes the collaborative filtering process and details the
algorithms used. Results are displayed and evaluated in sec-
tion 4 followed by a discussion on future research directions
in section 5. Finally Section 6 shows conclusions.

2. Related Work

Traditional methodologies for component search and
retrieval can be classified into four different categories,
namely Keyword Search, Faceted Classification, Signature
Matching and Behavioral Matching [10]. Each of the re-
trieval schemes have a number of limitations that result in
less than adequate retrievals. A common shortcoming of
these schemes is the failure to take into account the user or
relevant domain information when querying the component
repository.

Semantic-Based Method Retrieval [12] improves on the
above; the user specifies component requirements using nat-
ural languages. Domain information, user context and com-
ponent relationships are all considered. This methodology
relies on ontology as a knowledge base. Empirical results
indicate this technique is superior to traditional schemes.
However, in reality developers are not aware of all available
components. If they believe a reusable component for a par-
ticular task does not exist then they are unlikely to query
the component repository. Thus component retrieval must
be complemented with component delivery.

CodeBroker [13] infers the needs for components and
proactively recommends components, with examples, that
match the inferred needs. The need for a component is in-
ferred by developer comments and method signature. This
solution greatly improves on previous approaches however
the technique is not ideal. Firstly the reusable components
in the repository must be sufficiently commented, to allow
matching, this may exclude many components. Secondly
the developer must actively and correctly comment his/her

code.
Ohsugi et al. [11] propose a system, based on collabo-

rative filtering, to recommended useful functions in appli-
cation software such as MS-Word or MS-Excel. Software
usage or function execution histories are automatically col-
lected from many users in order to provide opportunities
to commence user clustering. A set of candidate functions
is then recommended to the individual, based on the opin-
ions of like-minded users. Our work applies a similar ap-
proach to a different problem domain, namely reusable soft-
ware components, recommending a set of candidate soft-
ware components to the developer, based on the opinions of
like-minded users.

3. Collaborative Filtering

The goal of collaborative filtering algorithms is to sug-
gest new items or to predict the utility of a certain item for a
particular user based on the user’s previous likings and the
opinions of other like minded users [1]. The first recom-
mender systems based on collaborative filtering to automate
predictions was GroupLens [3]. Collaborative filtering sys-
tems are founded on the belief that users can be clustered.
Users in a cluster share preferences and dislikes for partic-
ular items and are likely to agree on future items. In the
context of this paper, a user can be considered to be a Java
class and an item refers to a software component.

Collaborative filtering algorithms can be divided into
two classes, Memory-Based algorithms and Model-Based
algorithms. Memory based algorithms operate over the en-
tire user database to make predictions. In contrast, Model-
Based algorithms use the user database to learn a model
which is then used for recommendations. Memory-based
methods are simpler, seem to work reasonably well in prac-
tice and new data can be added easily. For these reasons we
decided to use a memory-based algorithm. A key aspect of
collaborative filtering is the identification of similar users
to the active user for whom the recommendation is being
sought. This similarity is based on item usage history. Our
prediction system has 3 components:

1. Usage History Collector.
2. User Similarity Analyser.
3. Recommender.

3.1. Usage History Collector

The usage history collector records all invocations of a
particular method. The collector stores information about
both the user (invoking class) and the item (method in-
voked). A distinction is made between overloaded meth-
ods by recording method signatures. The collector is imple-
mented using the Byte Code Engineering Library [2]. This
data is then transformed into a user-item matrix.

118

3.2. User Similarity Analyser

Each user is treated as a vector; the vector holds a count
for all components/methods that the user can invoke. Count
will hold a value of zero if the user has never used the par-
ticular method. The similarity between two users can be
computed by determining the cosine of the angle formed by
their vectors. This cosine will fall in the range [-1, 1]. A
cosine of 1 indicates two users are identical. A cosine of
-1 indicates two users share no similarities. This technique
needs to be tailored to the problem domain. To illustrate
this, table 1 displays the usage history for a small number
of Swing method invocations taken from random GUI Java
applications in SourceForge [4].

Item User User User
RemoteD HostList CompileDlg

JTextComponent: getText 1 1 8

JTextComponent : setText 2 2 4

JList: getSelectedValue 2 1 0

JList: getSelectedIndex 1 2 0

Table 1: Sample Usage History for Swing Methods

If compared on the JList method getSelectedIndex, user
RemoteD and user HostList will be considered as similar as
user RemoteD and user CompileDlg, as both counts differ
by one. However it is more likely that user RemoteD is
more similar to user HostList than user CompileDlg. This
is because we know that both RemoteD and Hostlist have
JList objects and that both need to get the index of the item
in the JList which the user has selected, therefore we can see
clear similarities between the two classes at both code and
task level. Hence a check is needed before vector similarity
is computed to ensure both users have used this item, if not
then an arbitrary small similarity value of 0.2 is assigned.

3.3. Recommendations

Recommendations were based on the following algo-
rithm. Let U and C denote the set of similar users and com-
ponents respectively. The recommendation Rac for user a
on component c is:

Rac =
∑

i∈U

(vic × simai) (1)

where vic is the count for user i on component c and
simai is the similarity between user a and user i, as calcu-
lated in subsection 3.2. A recommendation is made if Rac

is greater than or equal to the arbitrary threshold value, τ
= 1. The results of this equation depend on the component
count of other users who are similar to user a. A class that
is dissimilar to user a will have minimal impact on the final
recommendation.

The set of users U is based on the standard k-Nearest
Neighbour algorithm. The optimal value for k was found to
be 4. Hence for the following experiments we used k = 4
neighbours.

4. Recommendation Evaluation

4.1. Outline of Experiment

We have conducted experiments to investigate whether
the algorithm described in Section 3.3 could accurately pre-
dict useful components to the developer. The component
repository used in the experiment contained 1123 methods
from the standard Java Swing library. Recommendations
were made for a total of 343 Java classes, taken from over
40 GUI applications on SourceForge. In each class sev-
eral sets of recommendations were made. For example, if a
fully developed class used 10 Swing components, then we
removed 1 random component from the class and a recom-
mendation set was produced for the developer based on the
remaining 9 components. Following this recommendation
a further component was removed from the class and a new
recommendation set was formed for this developer based on
the remaining 8 components. This process was continued
until all but 1 component remained.

4.2. Evaluation

Precision and Recall are the most popular metrics for
evaluating information retrieval systems. Precision is de-
fined as the ratio of relevant recommended items to the to-
tal number of items recommended, as shown in equation 2.
This represents the probability that a selected item is rele-
vant.

P = Nrs/Ns (2)

where Nrs is the number of relevant items selected and
Ns is the number of items selected. An item, or component,
is deemed relevant if it is used by the developer. Recall, as
shown in equation 3, is defined as the relevant items selected
to the total number of relevant items. This represents the
probability that a relevant item will be selected.

R = Nrs/Nr (3)

where Nrs is the number of relevant items selected and
Nr is the number of relevant items.

4.3. Experiment 1

Initial experiments were carried out on the most suitable
classes for prediction. A suitable class has one or more
close neighbours, i.e., similar classes. An unsuitable class

119

Figure 1. Average Accuracy of Recommenda-
tions

has no close/similar neighbours and thus reduces prediction
quality. The upper plotted line in figure 1 displays the accu-
racy of recommendations for the 100 most suitable classes
for predictions:

Focusing on the recommendations for the top 100 classes
(the upper plotted line); the first point displays the aver-
age accuracy of a recommendation when the developer has
utilised between 0% and 10% of the total components they
will use. When the developer has utilised only 10% to 20%
of the components, recommendations are remarkable good
with an average accuracy of over 40%. Recommendation
accuracy steadily increased until over 70% of components
that the developer will actually employ are used. The de-
cline in accuracy after this point can be explained as fol-
lows: Consider a class that uses 10 components and the
system is making a recommendation when 50% of the com-
ponents are known, i.e., 5 components. If the system cor-
rectly recommends the remaining 5 components plus 2 in-
correct components, then recommendation accuracy will be
71%. However, if the system is making a recommendation
when 90% of the components are known and correctly rec-
ommends the 1 remaining component plus the 2 incorrect
components then recommendation accuracy will be 33%. It
is likely that the two incorrect components are used in a very
similar class to this active class for whom the recommenda-
tion is being sought, thus explaining the recommendation
in the first place. One possible way to overcome repeating
incorrect recommendations is to allow the developer to ex-
plicitly reject a recommended component. As a result the
component will not be suggested again. It is the author’s
belief that a number of the incorrect recommendations may
not have been out of context, that is to say the incorrectly
recommended component may indeed have been suitable
for the active class.

The promising results for the top 100 classes illustrate
the system potential as an effective recommender system.
The lower plotted line displays the average recommenda-
tion accuracy for all 343 classes. When the developer has

Figure 2. Precision versus Recall

utilised between 10% and 20% of the total components that
they will actually use, recommendations are 25% accurate.
Recommendation accuracy peaked to 43% when between
50% and 60% of components were employed. The notice-
able fall in recommendation accuracy is due to the fact that
recommendations are for all classes, including classes that
are unique or at least considerably different from all other
classes under test.

To evaluate the performance of the recommendation al-
gorithm, it is important that both precision and recall are
considered together. Figure 2 displays the trade off between
precision and recall. Prediction and Recall figures are an
average value based on recommendations for all classes.
As expected the lower the recall, the greater the precision.
When threshold τ = 3, as discussed in subsection 3.3, recall
is relatively small however precision is almost 60%. When
τ = 0.1, recall improves greatly at the expense of precision.

4.4. Experiment 2

It has been suggested that 40-60% of code is function-
ally identical to previously written code [7]. Therefore if
we increase the number of usage histories collected it is
likely that the probability of finding a class similar to the
active class, for whom the recommendation is being sought,
should also increase. 100 usage histories were randomly re-
moved from the usage history database leaving a total of
243. The fall in recommendation accuracy, as shown in fig-
ure 3 on the following page, confirms the relationship be-
tween the number of usage histories and recommendation
accuracy.

The average recommendation accuracy for the top 100
classes is 43%. This compares poorly to an average of 56%
when all 343 usage histories are collected. This would sug-
gest that the greater the number of usage histories collected,
the more reliable the recommendations. Clearly this trend
will not continue indefinitely, at some point adding more us-
age histories will have little or no effect on recommendation
accuracy.

120

Figure 3. Average Accuracy for top 243
classes

5. Future Work

In our system, classes are considered similar if they use
the same or a similar set of components. This similarity
measure needs to be extended. Firstly, we will consider the
sequence in which components are actually used and sec-
ondly, different granularities of similarity will be consid-
ered such as fields, methods and components used. Finally
a run-time analysis may be useful in highlighting different
run-time usage patterns for a particular component between
two different classes.

With any recommendation system it is important to ex-
plain how the recommendation was derived. Explanations
increase a programmer’s confidence in recommendations
and provide him/her with a mechanism for handling incor-
rect recommendations. CodeBroker [13] provides an inter-
esting feature that allows developers to view example code
of a particular component in use. Experiments carried out
on CodeBroker discovered that developers prefer code ex-
amples as opposed to descriptive texts. We will create an
intelligent IDE by developing a non-intrusive component
recommender as an Eclipse plug-in. The recommender will
support explanation by code example and Java documenta-
tion retrieval. Finally confidence measures will be added for
recommended components, this measure will be based on
the closeness of the active class with neighbouring classes.

6. Conclusion

A recommender approach to enable developers discover
useful and relevant reusable software components has been
presented. Our recommendation scheme addresses various
shortcomings of previous solutions to the component re-
trieval problem. Recommendations consider the developer
and problem domain whilst avoiding placing any additional
requirements on the developers

Recommender systems are a powerful technology that

can extract additional knowledge for a software company
from its code databases and then exploit this in future devel-
opments. From several experiments, we have demonstrated
that this approach offers real promise for allowing develop-
ers discover reusable components with minimal effort.

7. Acknowledgments

Funding for this research was provided by the Irish Re-
search Council for Science, Engineering and Technology
under grant RS/2003/127

References

[1] B.Sarwar et al. Item-based collaborative filtering recommen-
dation algorithms. In Proceedings of the tenth international
conference on World Wide Web, Hong Kong, 2001.

[2] Apache Jakarta Project. Bytecode Engineering Library.
http://jakarta.apache.org/bcel/index.html.

[3] P. Resnick et al. GroupLens: An Open Architecture for Col-
laborative Filtering of Netnews. In Proceedings of CSCW
’94, Chapel Hill, NC, 1994.

[4] VA Corporation. SourceForge. http://sourceforge.net.
[5] J. Carrol and M. Rosson. The paradox of the active user. In

J.M. Carroll (Ed.), Interfacing Thought: Cognitive Aspects
of Human-Computer Interaction. MIT Press, Cambridge,
1987.

[6] K. Daudjee and A. Toptsis. A technique for automatically
organising software libraries for software reuse. In Proceed-
ings of the 1994 conference of the Centre for Advanced Stud-
ies on Collaborative research, Canada, 1994. IBM Press.

[7] W. Frakes and P. Gandel. Representation methods for soft-
ware reuse. In Proceedings of the conference on Tri-Ada
’89: Ada technology in context: application, development,
and deployment, pages 302–314, Pennsylvania, USA, 1989.

[8] M. Griss. Software reuse at hewlett-packard. In Proceedings
of the 1st International Workshop on Software Reusability,
Dortmund, Germany, 1991.

[9] J. Hopkins. Component primer. Communications of the
ACM, Vol. 43:pages 27–30, 2000.

[10] A. Mili, R. Mili, and R. Mittermeir. A survey of soft-
ware reuse libraries. Annals of Software Engineering, Vol.
5:pages 349–414, 1998.

[11] N. Ohsugi, A. Monden, and K. Matsumoto. Recommen-
dation system for software function discovery. In Proceed-
ings of the 9th Asia-Pacific Software Engineering Confer-
ence (APSEC2002), Dec. 2002.

[12] V. Sugurmaran and V. Storey. A semantic-based approach to
component retrieval. ACM SIGMIS Database, Vol. 34:pages
8–24, 2003.

[13] Y. Yunwen and G. Fischer. Information delivery in support
of learning reusable software components on demand. In
Proceedings of the 7th international conference on Intelli-
gent user interfaces, California, USA, 2002. ACM Press.

[14] Y. Yunwen and G. Fischer. Personalizing delivered infor-
mation in a software reuse environment. In Proceedings of
8th International Conference on User Modelling (UM2001),
Sonthofen, Germany, 2002.

121

TEMPLATE MINING IN SOURCE-CODE DIGITAL LIBRARIES

Yuhanis Yusof and Omer F. Rana
School of Computer Science, Cardiff University, PO Box 916, Cardiff CF24 3XF, UK

{y.yusof, o.f.rana}@cs.cardiff.ac.uk

Abstract

As a greater number of software developers make their
source code available, there is a need to store such open-
source applications into a repository, and facilitate search
over the repository. The objective of this research is to build
a digital library of Java source code, to enable search and
selection of source code. We believe that such a digital li-
brary will enable better sharing of experience amongst de-
velopers, and facilitate reuse of code segments. Information
retrieval is often considered to be essential for the success
of digital libraries, so they can achieve high level of effec-
tiveness while at the same time affording ease of use to a
diverse community of users. Four different matching mech-
anism: exact, generalization, reduction and nameOnly is
used in retrieving Java programs based from information
extracted through template mining.

1. Introduction

A Digital Library (DL) may be regarded as a managed
collection of information (in digital format) with associated
services. These services enable access to this information
over a network, and can range from support for selecting
and browsing material in the collections, organising and
archiving it, and making it available in different visual for-
mats. Often DLs contain a diverse collection of information
for use by many different users, and the size of information
contained within it can vary. Examples of documents kept
in DLs include journal papers, chapters of electronic books
and magazines, and product documentation. Various tech-
niques can be used in understanding the content of the DLs
– such as classification, association discovery, clustering,
visualization of data, information extraction, etc.

Information extraction is the process of capturing struc-
tured information from a particular document. Natural lan-
guage processing techniques can be used to extract data di-
rectly from text if either the data, or the text surrounding
the data, form recognizable patterns [2]. A key motivation
for our work is to facilitate software reuse through informa-

tion extraction, whereby a software engineer or program-
mer could make use of existing software packages to cre-
ate new programs. Software reuse has been shown through
empirical studies to improve both the quality and produc-
tivity of software development. Our thesis is that software
reuse should not just be restricted to reusing software li-
braries in their entirety, but also enable software developers
to understand the process associated with solving a prob-
lem encoded in the software library. A software developer
may be interested in understanding how a particular feature
has been coded in a particular language – rather than per-
haps make full use of code that has been implemented by
someone else.

Recent efforts in object oriented programming (such
as the Common Object Request Broker Architecture
(CORBA), and recently Web Services) indicate the signif-
icance of writing software as independent services to en-
able reuse. As software reuse is becoming more impor-
tant, there is a need to store open-source applications in
the format of a searchable repository. Such a repository
will store all documents related to an application, which
includes the source code, comments in versioning systems
(such as CVS), documentation provided with the source
code (such as a Javadoc document with Java source code),
and details about the structure of the library (such as a class
hierarchy), etc.

2. Related Work

There is limited literature in the area of applying tem-
plate mining for extracting information: Cowie and Lehn-
ert [3] have successfully extracted proper names from docu-
ments. Extraction of facts from press releases within a com-
pany’s financial information system has also been under-
taken in a few systems, such as ARTANS [9], JASPER [10]
and FIES [1]. It has also been proven that template mining
is able to build an abstract of scientific papers [8] and also
the extraction of citation from digital documents [4]. Four
different template are utilised, one for extracting informa-
tion about articles, while the others are used for extracting
information from citations.

122

Even though there has been much research done into ex-
tracting information from text documents, a significant ef-
fort has not been put into extracting information from soft-
ware packages – especially program source code. Most of
the research done in the area of understanding source code
is mainly focused in categorizing the programming lan-
guage used into a particular software component or source
code achieve [11]. Ugurel et al. [13] classified source code
into appropriate application domains and also program-
ming languages using three components, namely the fea-
ture extractor, vectorizer and Support Vector Machine clas-
sifier. Paul and Prakash [12] have produced a framework
which uses pattern languages to specify interesting code
features. The pattern languages were derived by extending
the source programming language with pattern-matching
symbols. They transformed the source code into specific
symbols by including a set of symbols that can be used to
substitute syntactic entities in the programming language.
In this paper, we discuss the usage of template mining in re-
trieving relevant Java programs stored in software packages,
within a Digital Library of source code.

A related area that has been investigated by others is the
submission of queries to retrieve particular source code by
name. One example of this is the retrieval of particular
numerical algorithms via email. Dongarra and Grosse [5]
demonstrate this with reference to their Netlib Digital Li-
brary. Our approach differs from this in that we are inter-
ested in a variety of search techniques – and not just an exact
match. Furthermore, many such approaches are restricted
to particular types of applications (numerical algorithms in
this case), and therefore are restricted in their scope. We
also see limited use of existing search engines for this par-
ticular problem, as search engines such as Google.com
or Altavista.com do not provide any support for for-
mulating a query based on program structure. Therefore
template search mechanisms provide users, especially pro-
grammers, with specific search capabilities without neglect-
ing the use of keyword search as offered by Unix utilities
like grep.

3. Java Template Miner

In developing our Template Mining approach, we are
making the following assumptions:
• Users have some indication of the types of source code

they are interested in. This could be in terms of the
keywords they assume to be present within such source
code, or the likely method names that such source code
could contain. Although not likely to be valid in a
general case, we have found this assumption to hold
true based on the existing source code archives such as
Sourceforge.net. Perhaps one reason for this is
that developers who offer their source code for use by

others often also attempt to describe their data struc-
tures or method names with comments that could be
relevant for others.

• Users are familiar with the likely structure of the
source code they are trying to find. This may be par-
ticularly true for numerical approaches (where nested
loops are often used over arrays or similar data struc-
tures). Often many programming languages targeted
towards the scientific computing community provide
specialist support for such data structures (examples
include OpenMP and High Performance Fortran).

A prototype system is currently under development – and
primarily focused at Java developers. The general architec-
ture of the prototype is described in Figure 1.

INDEXER

RETRIEVER

Digital library

of Java

Applications

user

Existing Java

Applications

Figure 1. General architecture of source-code
digital libraries

Two main components are included in the architecture,
the INDEXER and the RETRIEVER. Existing Java appli-
cations are fed into the INDEXER, which will finally pro-
duce two text files: index.txt and indexMethod.txt file. Each
source code file is analyzed individually, and is used to build
a set of keywords. The index file now contains relevant key-
words which represent each of the source files contained in
the archive - and divided into the application from which
the source file has been obtained. The index file thus es-
tablishes the rules to generate the internal representation of
both the queries and content of software packages.

An index I is defined as a set of terms from each software
package or user query: I =< S1, S2, ...Sn >, where Si is a
set of terms obtained from a software package, and Pj is the
number of software packages in the repository. Therefore,
Si ⊆ Pj , such that Si = {ti1, ti2, ..., tik}, where tij ∈ Pj ,
(1 ≤ j ≤ k), (k ≤| Pj |).

On the other hand, RETRIEVER extracts relevant Java
source code from the DL that fully or partially matches the
requested queries posed by a user. In general, it is defined
as follows: let C be the set of all possible portions of Java
source code for a given query. Let A be the set of all avail-
able portions of Java source code in the repository. Let
f : C → PA where PA is the power set of A. Given a
target query: It =< S1, S2, ...Sn > the function(f) returns
a set of Java programs from A that are the same or similar
to It. We may specify the function as: f(It) = A′, where

123

A′ ⊆ A, and A′ = {Ix1, Ix2, ..., Ixy}, where Ixi ∈ A, and
(0 ≤ y ≤| A |).

Users are given two choices, either to use the key-
word/phrase query or the program template query. Here
we will only be focusing on retrieving relevant Java files
based on a program template. Several different types of
information are automatically generated from the template
query which will be mapped against the index files. In-

Local text analysis

Lexical

analysis

Name

recognition

Scenario pattern

matching Documents

Figure 2. Structure of an information extrac-
tion system

formation extraction in this context involves two stages:
extracting individual facts from the text, and integrating
these facts to create a coherent understanding of the pro-
gram. In doing so, we follow some elements contained
in the structure of an information extraction system [7].
From Figure 2, lexical analysis is done by dividing the
plain text into tokens which will then be used to treat
each word separately. Each tokens is then referenced to a
Java dictionary to determining its usage. For example to-
ken of import, public, static, class etc are
recognized and accepted, while tokens containing the,
method, processing etc are not. Following the anal-
ysis is the name recognition process where class name and
method signature are analysed. Finally, pattern matching is
implemented to integrate both facts captured through lexi-
cal analysis and name analysis. An example of a program
template used in our experiment is provided below:

public class Matrix {

public Matrix getMatrix (int a, int b, int[]c) {

;

// body of the method //

}

public Matrix transpose () { }

public Matrix plus (int B) { }

public Matrix minus (double B) { }

}

Mining from the above template, several information can
be extracted and mapped against the index.txt and in-
dexMethod.txt files. These two files were initially created
based on the software packages contained in the source
code repository. They contain keywords captured from all
text documents and source code programs of the reposi-
tory. These include the class and method signatures which
can then be used to retrieve similar Java programs from the

repository. Class name is recognized by the Java keyword
class while method signatures are recognized by three
identifier: name, return type and the first parameter (if it
exists). If there are no parameters provided in a particular
method, the system will automatically replace it with the
string ‘none’. Currently, this system only recognizes seven
main data types: String, char, Boolean, int,
double, float, long, byte and short. If any
other data types were found, the system will then automati-
cally replace it with ‘none’.

Based on these, the search process is undertaken using
four different methods (described in more detail below):
(1) exact matching, (2) generalization, (3) reduction, and
nameOnly. In the exact matching procedure, class name
and method signature are compared. If the system fails
to find an exact match (equivalent to a Boolean AND)
where all requirements (class and method signature) are
successfully matched, it will then use the generalization
method. In this method, the system will change some of the
parameters in the method signature. For example, consider
a Program Template:

public Matrix minus(double B) -> public Matrix

minus (float B)

where the data type double for argument B will be changed
to data type float. Java files will be retrieved only if it
matches the method name and either the return type or the
first parameter. Alternatively, the search mechanism will
retrieve Java programs based on the reduction technique
(based on a Boolean OR) during the matching process. If
either the return type or the first parameter is matched then
the program is considered relevant to the query. Compared
to the previous matching mechanism, reduction matching
does not replace any data types before processing. Finally,
the search mechanism will retrieve all Java programs which
have the same method name while ignoring its signature.
The final outcome of the template mining in source-code
digital libraries is a list of Java programs, and this list is
returned in a text file – resultTemplate.txt. These four ap-
proaches can be used as a first step in selecting suitable pro-
grams from an archive – with increasing degree of closeness
to a template.

4. Result Analysis

Currently a Java repository of 114 MB has been built by
storing 30 Java packages in it. Two index file are generated
initially before template mining is done: index.txt and in-
dexMethod.txt. Table 1 shows two factors (time and file
size) being observed during the process of generating index
files and undertaking template mining in the Java source-
code repository.

124

Table 1. Time and file size of generated index
files

FILE TIME FILE SIZE
(name) (ms) (bytes)

Index.txt 3140144 110590248
IndexMethod.txt 89591 2365555

resultTemplate.txt 7703 573

The processing time and file size of index.txt is longer
and bigger as it contains all relevant words captured from
the Java repositories. On the other hand, indexmethod.txt,
only contains relevant keyword for method signatures. On
completing the template mining and search process, the re-
sult is written into file resultTemplate.txt. Based on the pro-
gram template used in the experiment (Section 3), the pro-
cessing time taken to find and retrieve relevant Java pro-
grams is 7703 millisecond.

A precision and recall analysis is undertaken for com-
paring the effectiveness of source-code retrieval (Table
2). According to Frakes and Baeza-Yates [6], “Recall” is
defined as the ratio of relevant documents retrieved for a
given query over the number of relevant documents for that
query in a repository. Similarly, “Precision” is defined as
the ratio of the number of documents retrieved that were
found to be relevant (as identified by a human expert) over
the total number of documents retrieved from the reposi-
tory via a given query. We use the same definition here for
tabulating results of our experiment based on the program
template mentioned in Section 3. Where the above defini-
tion says documents and database, the word Java programs
and repository respectively can be substituted. We similarly
adapt some of the other concepts identified when defining
Recall and Precision for text documents. When evaluating
Recall, we therefore investigate that out of all the relevant
Java files in the repository, how many did our search actu-
ally retrieve? For evaluating Precision, we determine out of
all the Java files that were extracted during a search, how
many were relevant. According to Frakes [6], ”both Re-
call and Precision take on values between 0 and 1” (or be-
tween 0 and 100 when expressed as percentages). Table
2 presents the recall and precision figures for each search
performed normalized to lie between 0 and 100.

Each of the extracted information (class name and
method) is analyzed separately for an exact string and a
sub-string match. Exact string matching is used to re-
trieve programs with the exact class name or method name,
while sub-string matching is used to retrieve programs with
the target string being a part of one string or if there ex-
ist any string as a substring of the target string. For
example, if a user is searching for Matrix.Java, the
file name createMatrix.java will also be retrieved
through sub-string matching. Let Mi be the method name in

Table 2. Precision and recall analysis of sub-
string matching

the index file, and Mq be the target (query) method name. If
the length of target string is less than the index term, we will
accept Java programs which produces (0 ≤ (Mi.length −
Mq.length) ≤ x), otherwise the accepted string matching
must fulfill (0 ≤ (Mq.length − Mi.length) ≤ y). The
values of x and y are chosen to be 10 and 5 respectively –
these are heuristics based on our current data set.

From the result, retrieved documents based on string
matching produced the result of 100% for both precision
and recall analysis. However, this does not happen in sub-
string matching where recall analysis produces an average
of 64.92%. The issue here is whether we would like to con-
sider sub-strings within a sub-string to also be relevant dur-
ing the search process. Although we see benefits of un-
dertaking such an analysis in particular instances, the gen-
eral benefit of this approach is not obvious to us. In this
case, recall analysis would be 0% as the system is not able
to produce any result. The current system is not able to
extract sub-strings contained within a string automatically,
and search for these as query terms. As long as the Java
program (source string) contains the searched string (ignor-
ing the sub-string length and location of each element), cur-
rently we still consider it as a precise retrieval. This leads us
to obtain 100% precision as all the retrieved documents are
found to be relevant to the query. Meanwhile, as for recall
analysis, the system fails to retrieve some relevant java pro-
grams which then produced an inconsistent recall percent-
age. (Table 2) also contains elements of ’-’ as the answer
set for the query is 0 and therefore, we could not calculate
the percentage. From four retrieval techniques mentioned

125

in Section 3, retrieved Java files are categorized as follows:

1. matching of class name and all methods signature

2. matching of class name and all methods signature
(generalization)

3. matching of class name and all methods signature (re-
duction)

4. matching of class name and all methods signature
(nameOnly)

5. matching of class name only

6. matching of method signature only

Each retrieved document is being given different points if
it is classified under the above categories. The values are
then summed over all the categories to obtain a ranking for
the retrieved files (in terms of their relevance to the initial
query). Documents with the highest value of points will be
ranked as the most relevant program to the program tem-
plate defined by a user.

Comparing this process to a software repository such
as Tucows.com where users are presented with software
to be downloaded (in different categories), this system
presents Java source code to help users (especially program-
mers and system analysts) in reusing existing software li-
braries. Similarly, in SourceForge.net, open-source
applications are catalogued based on their particular cate-
gories, such as Programming Language and Operating Sys-
tem, etc. The search process utilised in SourgeForge
makes use of keywords, and is based on general descrip-
tions given to each of the stored packages. In other hand,
both SourceForge and Tucows do not allow any source
code retrieval based on users query. We see our approach
as an obvious extension of the search process supported by
such public domain software repositories – and our current
test set is based on a subset of source code obtained from
SourceForge.

5. Conclusion and Future Work

With the emerging interest in making source code avail-
able, and the significant emphasis being placed on this by
many software architects, DLs that support the searching
for source code have become necessary. The importance of
the reuse of software artifacts has been discussed as a key
motivator for the implementation of such source-code dig-
ital libraries. A system for supporting this is identified, to
support users in locating Java source code. Relevant infor-
mation is extracted from a program template provided by
the user and this is compared against index files generated
from software packages stored in the repository.

Currently, as a continuity to the research, we are extract-
ing other information from the repository which includes

class hierarchies and associations between different classes
within a software. This is being achieved by automatically
developing a Unified Modelling Language (UML) diagram
(using reverse engineering tools), and by automatic extrac-
tion of design patterns from the source code. With this,
users will have more choices in creating their query, and
specifying their search criteria. Relevant programs will then
be presented to the user ranked according to their relevance
of both exact/inexact keyword search, and relevance based
on program structure. We also intend to make better use
of software categories in existing source code archives, and
include these with the approaches mentioned above.

References

[1] W. Chong and A. Goh. Fies:financial information extraction
system. Information Services and Use, 17(4):215–223, 1997.

[2] G. Chowdury, N. Kemp, M. Lawson, and M. F. Lynch.
Automatic extraction of citations from the text of english-
language patents - an example of template mining. Informa-
tion Science, 22(6):423–436, 1996.

[3] J. Cowie and W. Lehnert. Information extraction. Commun.
ACM, 39(1):80–91, 1996.

[4] Y. Ding, G. Chowdhury, and S. Foo. Template mining for
the extraction of citation from digital documents. Library
Trends, 48(1):181–207, 1999.

[5] J. J. Dongarra and E. Grosse. Distribution of mathematical
software via electronic mail. Communications of the ACM,
30(5):403–407, 1987.

[6] W. B. Frakes and R. Baeza-Yates. Information retrieval:
data structures and algorithms. Prentice-Hall, Inc., 1992.

[7] R. Grishman. Information extraction: techniques and chal-
lenges. In M. T. Pazienza, editor, Information Extrcation,
Springer-Verlag Lecture Notes in AI, pages 10–27, Rome,
1997.

[8] P. Jones and D. Chris. A ’select and generate’ approach to
automatic abstracting. In T.McEnery and C.D.Paice, editors,
Proceedings of the BCS 14th Information Retrieval Collo-
qium. Springer-Verlag, 1992.

[9] S. Lytinen and A. Gershman. Atrans:automatic processing of
money transfer messages. In Proceedings of Fifth National
Conference on Artificial Intelligence, pages 1089–1093, Los
Altos, CA, 1986. Morgan Kaufmann.

[10] M. A. Peggy, J. H. Philip, K. H. Alison, M. S. Linda, B. N.
Irene, and P. W. Steven. Automatic extraction of facts from
press releases to generate news stories. In Proceedings of the
3rd Conference on Applied Natural Language Processing,
pages 170–177, Trento, Italy, 1992.

[11] P. Ruben and F. Peter. Classifying software reuse. IEEE
Software, 4(1):616, 1987.

[12] P. Santanul and P. Atul. A framework for source code search
using program patterns. IEEE Transaction on Software En-
gineering, 20(6):463–475, 1994.

[13] S. Ugurel, R. Krovetz, and C. L. Giles. What’s the code?:
automatic classification of source code archives. In Proceed-
ings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 632–638.
ACM Press, 2002.

126

Multi-Project Software Engineering: An Example

Pankaj K Garg
garg@zeesource.net

Zee Source
1684 Nightingale Avenue, Suite 201, Sunnyvale, CA 94087, USA

Thomas Gschwind
tom@infosys.tuwien.ac.at

Technische Universität Wien
Argentinierstraße 8/E1841, A-1040 Wien, Austria

Katsuro Inoue
inoue@ist.osaka-u.ac.jp

Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Abstract

In this paper we present an approach for developers to
benefit from multi-project software knowledge. As we show
in this paper, this can be achieved by gathering information
about how numerous software projects are being built, and
about the interrelation of the modules within the projects.
Compared to approaches that only monitor a single project,
the contribution of our approach is that it not only sup-
ports the reuse of isolated software modules or libraries
but also the knowledge surrounding the code and individual
projects. For instance, if a component is replaced with an-
other probably better implementation within a project, this
knowledge can be shared with all relevant projects. In this
paper, we show how the collection of such data allows de-
velopers to learn about such decisions from other projects,
and hence how to benefit from such “multi-project” knowl-
edge.

1. Introduction

Recent advances in computer and networking hardware
have enabled the collection and analysis of huge amounts
of information. In this paper we present the idea that such
advances can be leveraged for Multi-Project Software Engi-
neering, i.e., engineering of thousands of software projects
simultaneously. In the past, software reuse has focused on
sharing code among projects, whether through black-box or
white-box reuse. With Multi-Project Software Engineering,

not only does code get reused across projects, but knowl-
edge surrounding the code and the project gets extensively
reused among the projects.

For example, if there’s a break-down in a reusable com-
ponent in one project, then information about the prob-
lem can be instantaneously broadcast to the thousands of
users of that component. Correspondingly, each of the other
projects does not have to independently discover the prob-
lem, and waste time through redundant problem resolution
processes. Similar mechanisms can be put in place to avoid
extra wasted effort when temporary or permanent fixes are
discovered for the component’s problem.

Enabling such Multi-Project Software Engineering re-
quires a networked infrastructure that manages process and
product information for multiple projects effectively. De-
sign choices of what information gets stored, and how, will
have substantial impact on the functionality and power of
the resulting engineering processes. To that effect, we bor-
row heavily from the lessons learned from decades of work-
ing of the Open Source communities [14]. As such, we de-
scribe an architecture of storing and utilizing Multi-Project
Software Engineering data, leveraging some of the key tech-
nologies developed by the Open Source community for sup-
porting their own software development processes.

We are actively researching different methods of ana-
lyzing the vast amounts of multi-project software engineer-
ing data. For example, one promising area of work is au-
tomatic categorization of software systems, based on the
source code of the systems, or keywords and comments as-
sociated with the source code [9, 10, 11]. In this paper, we

127

describe another significant analysis opportunity: utilizing
multi-project data to improve the effectiveness of the reuse
processes for component-based reuse. In particular, we de-
scribe the opportunity for real-time and continuous adap-
tation of the “best possible” component for a multitude of
projects.

Suppose a component � is used by a multitude of soft-
ware systems �� through ��. Further, suppose that there
are � implementations of �, �� through ��, and each
implementation has a slight variation in the interface pro-
vided, operating system supported, performance character-
istic, and so forth. Hence, each of the � projects have to
make a choice about which implementation of the compo-
nent to use. Moreover, as time progresses, and the imple-
mentations of the components change, the projects have to
keep making these choices. Current technologies do not
provide much support for one project’s choices influencing
other projects, except through out-of-band communication
or coordination among the projects.

Through Multi-Project Software Engineering, we can
provide automation for several aspects of this reuse process:
(1) we cluster related components together, e.g., by their us-
ability or interface provided, (2) we rank the components by
their popularity among �� through ��, and (3) we can pro-
vide automatic substitution of components if and when a
problem is discovered in one of the implementations. In the
rest of this paper we give an overview of technologies used
to provide such automation.

2. Storing and Utilizing Data

An essential component of Multi-Project Software Engi-
neering is the ability to systematically collect and organize
large amounts of data, from tens of thousands of software
projects. This requires: (1) mechanisms for defining the
data to be collected from each project, (2) systematic orga-
nization of the collected data, and (3) mechanisms for easily
obtaining the data from each project.

For each of these questions, we learn from the experi-
ences of the Open Source and Free Software communities
that have demonstrated environments for collecting and or-
ganizing vast amounts of multi-project data, through the
pioneering efforts such as the Open Source Development
Network (OSDN) [15] and the Gnu software tools. Hence,
similar to the OSDN, for each project we capture complete
versioned source code trees, email discussion archives, bug
report and their workflow, and documents associated with
the project including web pages. We use a combination of
the hierarchical file system and relational database to orga-
nize the large amounts of data.

Rather than collect such data a posteriori, we collect and
organize such data in situ. A critical aspect of this is to col-
lect data as a side-effect rather than as an after-thought. This

implies the existence of a Multi-Project Software Engineer-
ing Environment (MSEE) that can easily accommodate the
development effort of tens of thousands of projects. In the
following, we briefly describe the architecture of one such
MSEE, SourceShare [1, 2], with which we are most famil-
iar. Other MSEE’s (e.g., see [7]) have similar architecture.

SourceShare is a web-based service. Through the web
interface, SourceShare provides capabilities to:

� Add a new software project to the collection

� Browse through existing projects, using various sort-
ing orders like categories, software name, contact
name, or date of submission.

� Search through the software projects, either through
the source code, software descriptions, mailing list
archives, or issues and bug reports.

When a user adds a new software project, SourceShare
requires the user to input a set of information about the soft-
ware, e.g., who were the authors of the software, some key-
words, a brief software description and title, etc. Source-
Share stores this information in an XML file associated with
the project. It also instantiates a version control repository,
a mailing list, and a bug tracking system for that software
project. Henceforth, users of SourceShare can start working
on the project using the version control repository for their
source code management. As in the case of Open Source
software, SourceShare requires that all decision making and
discussions about the software project be carried out using
the email discussion list associated with the project, thereby
maintaining a history of project decision making.

General users of SourceShare are free to browse through
the source code and mailing list discussion forums to get a
better understanding of the software. If they find any prob-
lems or issues with any software, they can input such issues
in the bug tracking system associated with that software.

Hence, an MSEE provides some important features en-
abled by the rapid advances in network, CPU, and disk ca-
pacities:

� maintain and make visible tens of thousands of soft-
ware projects at the same time,

� systematically collect and organize fine-grained data
on each project for source code versions, problem re-
ports and their resolution, and project discussions,

� provide a uniform web-based interface to all informa-
tion, and

� collect data as side-effect of normal project activities.

128

3. Multi-Project Analysis

In a multi-project environment, larger projects typically
rely on components implemented as part of other, proba-
bly smaller projects. A potential problem in such a work
environment, especially in an Open Source setting, is that
projects may die and are no longer maintained by their de-
velopers. In the subsequent discussion, we use project� to
denote such a project. If such a situation arises, projects that
rely on a component implemented as part of project� need
to find other components providing the same or a similar
functionality.

Typically, if such a situation arises, the maintainers of all
the projects relying on a component that was provided by
project� are seeking for alternatives. Thus, the process of
locating projects that provide a viable alternative is dupli-
cated several times. Using multi-project analysis, it is pos-
sible to base ones decision on the decision made by other
projects that have used the same project� in the past. That
is, one can issue queries such as “which other projects have
been using components provided by project �, and which
other projects did they use in order to substitute the compo-
nents originally provided from �?”

One challenge is that for different projects, different sub-
stitute projects may be adequate, hence we must rank the
components according to their popularity or similarity to
the original project �. In order to solve this problem, we
can use the component rank system that we have presented
in [8].

Another challenge is that the substitute component typ-
ically provides a different interface than that provided by
the original component �. In this case, it is necessary to
adapt the substitute component. After the first project, how-
ever, has switched already to that given substitute compo-
nent, we can learn from this other project the steps that have
been taken in order to adapt the substitute component and
reuse this kind of adaptation code. In order to achieve this
functionality, a technique such as provided by type-based
adaptation [6] can be used.

3.1 Component Rank

There are two kinds of technology elements needed to
find alternative components.

1. Find a set �� of components which have similar func-
tionality to the replaced component� in �.

2. Find the most reliable component in �� .

To resolve these issues, we have developed a model
called component rank [8]. In this model, the search space
for the components is represented as a directed graph. Each
node in the graph represents a component. Each edge shows

a use relation from a component to another in the sense of a
method invocation, instance variable access, and so on. The
component rank for a component is then the sorted order
of the component by its eigenvalue of the adjacent matrix
of the graph. This ranking intuitively shows significance
and reliability of the components in the search space, i.e.,
a component with many incoming use edges from higher
ranked components has a higher rank. A component used by
many other components inside the project or other projects
have many incoming edges, and it will generally have a high
rank.

There are many cases that a single component devel-
oped in a project is repeatedly duplicated and reused in later
projects with slight modifications. In order to identify the
duplication, we define syntactical similarity among compo-
nents. Various mechanisms have been used to identify syn-
tactical similarity among the source codes of components,
such as code-clone detection, distance computation by diff,
and various metrics-value computation (e.g., LOC or com-
plexity). Very similar components are merged into a single
node in the graph so that the effect of multiple duplication
will be removed.

A component search system has been developed using
this model. In this system, a Java class is a component,
and the system has many features, such as keyword search,
use relation trace among classes, various software metrics
computation, code-clone detection, and so on.

To find the alternative components using the component
rank system, the following process will be applied.

1. Find �� in the search space.

(a) Locate � in the search space. There are two pos-
sible ways to do this. We may browse the pack-
age hierarchy for the target �, or give keywords
which will uniquely extract �.

(b) Search all similar components �� . The system
has already collected and merged all syntacti-
cally similar components into a single node in
the graph. So the collected components for �
are the member of �� . Also, functionally sim-
ilar components are collected by the keyword
search mechanism of the component search sys-
tem. Unique names in library-call statements or
in comments will be used as the keyword.

2. Compute the component ranks of all components in
�� , and pick up a high-valued component as reli-
able one. The system lists up the components in the
sorted order of the component ranks, and the devel-
oper checks each component from the top until a satis-
factory component is found.

129

3.2 Component Substitution

In the previous section, we have seen how a substitute
component can be located on the basis of the knowledge
of other projects. Once a substitute component has been
located that provides the same functionality as the original
component, it needs to be adapted. This is because it is un-
likely that another implementation������ of the component
� provides the same interface as the original component
�����.

One option for the developer is to modify the implemen-
tation of������ to make it fit his needs. This approach, how-
ever, defeats the purpose of component-based development
as it no longer allows the component ������ to be main-
tained separately. Otherwise, the implementation of ������

would have to modified whenever a new version made avail-
able. In order to avoid this problem, developers typically
implement small wrappers that adapt the component in a
way such that it provides the interface required by their ap-
plication (i.e., that of �����).

Once, a project has already located a substitute compo-
nent and the developers have already implemented the nec-
essary wrappers in order to provide the interface of the orig-
inal component, it would be more efficient if other projects
could simply reuse these wrappers. This can be achieved
by putting them into a shared repository where they can be
queried for as information about the component interfaces
they wrap, respectively provide. By doing so, this reposi-
tory can be queried by other projects. Hence, adapters be-
come first order objects and can be reused in a way similar
to component implementations.

This kind of infrastructure is provided by type-based
adaptation which we have presented in [6]. In addition to
storing wrappers in a repository, type-based adaptation can
only determine when adapters can be combined in order to
provide more powerful adaptations. In fact, adapters can be
combined when the interface provided by one adapter is the
subtype of the interface required by another adapter. In cer-
tain situations, this relationship may be relaxed as we have
shown in [5].

Type-based adaptation only requires the ability to iden-
tify the interfaces required by a project ����� and that pro-
vided by a component������. Both can be identified on the
basis of project data available in the CVS repository as well
as the project’s inter-dependencies. By using this informa-
tion and the adapter’s stored in the repository, type-based
adaptation can automate the adaptation process by deciding
when a adapters are needed and how they are to be applied.

More importantly, type-based adaptation can determine
when it is necessary to chain several existing wrappers to
effect an adaptation that is more powerful than any one ex-
isting wrapper can do by itself. This ability to chain wrap-
pers together greatly increases the power of the process and

requires many fewer wrappers to be written by the program-
mers. As we have mentioned before, we only have to define
rules on when two wrappers may be combined. In the sim-
plest case, this is the case one wrapper provides the interface
that can be used by another wrapper and hence, they may be
combined.

4. Related Work

Mockus, Fielding and Herbsleb present a case-study
about Open Source Software projects in [12]. They used
email archives of source code change history and Bugzilla
problem reports to analyze the overall community and de-
velopment process such as the code contribution, problem
reporting, code ownership, and code quality including de-
fect density in the final programs and problem resolution
capacity. However, they only used this data to compare
the open source development methods by looking at the
Apache and Mozilla projects with the traditional commer-
cial one. Our approach, however, focuses on the knowledge
surrounding multiple projects and to try to learn from these
projects.

Another approach that takes modification and problem
reports into account is presented by Fischer, Pinzger and
Gall in [3]. They use this data to analyze the evolution of
a given software project and to track and to identify hidden
relations between different features of the software system.
Unlike our approach, however, they only take a single soft-
ware project into account and do not try to identify relation-
ships between multiple different software projects.

Component rank was first inspired by the famous docu-
ment search engine Google [4, 13]. Google collects various
documents from the Internet, analyzes their link structures
among the documents, and computes the significance of
each document using similar algorithm as ours. For queries
of keywords from the users, Google returns the lists of doc-
uments containing the keywords in decrease order of their
significance.

Google mainly targets general documents such as HTML
and PDF, but it also contains source code of software. So
it could be used as the software component search. How-
ever Google generally returns less precise lists than the lists
made by the component rank. This is because Google does
not have any mechanism for the source code analysis such
as use-relation analysis and similarity check done in our
component rank computation.

5. Summary

In this paper, we have presented a novel idea that an-
alyzes the modification and bug report data of multiple
different projects. By analyzing this data, it is possible

130

to deduct knowledge used by the different projects that if
shared among the project can lead to improved software en-
gineering practices. A benefit that we have shown in this
paper, is that projects can benefit from other projects that
make use of the same or similar components.

By identifying projects that use the same component
implementation �� of a component �, it is possible to
share knowledge surrounding the component across mul-
tiple projects. For instance, if one of the projects using � �

uses an updated version of this component or replaces it
with another component providing the same kind of func-
tionality, this knowledge can be shared across projects.
Hence, it allows a component �� to be replaced with a su-
perior component �� more quickly within a large number
of projects. Such kind of knowledge is especially of im-
portance when the component implementation� � no longer
fulfills the requirements of the project. In this case, it is
necessary to locate a substitute component � � that is able
to meet the projects demands. As we have seen, using our
component rank system it is possible to determine the us-
ability and flexibility of different software components and
based on that knowledge to infer which component imple-
mentation�� should be used to replace the original compo-
nent �.

Another challenge that is typically encountered is that
a substitute component may not provide exactly the same
component as the original component used for a given
project. In such a case it is necessary for a given compo-
nent�� to be adapted in order to meet the requirements of a
given project (i.e., to provide the same interface as the origi-
nal component��). Such adaptation, however, can be easily
accomplished using type-based adaptation. As we have ex-
plained, type-based adaptation allows the reuse of code that
has been implemented in order to adapt a substitute compo-
nent �� in order to meet the requirements of the originally
used component��.

References

[1] J. Dinkelacker and P. Garg. Corporate Source: Applying
open source concepts to a corporate environment. In 1st
ICSE International Workshop on Open Source Software En-
gineering, 2001.

[2] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progres-
sive Open Source. In Proceedings of the International Con-
ference on Software Engineering, Orlando, Florida, 2002.

[3] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE),
pages 90–99. IEEE, Nov. 2003.

[4] The Google website. http://www.google.com.
[5] T. Gschwind. Automated adaptation of component inter-

faces with type based adaptation. Technical Report TUV-
1841-2003-14, Technische Universität Wien, Apr. 2003.

[6] T. Gschwind. Type Based Adaptation: An adaptation ap-
proach for dynamic distributed systems. In Proceedings
of the 3rd International Workshop on Software Engineer-
ing and Middleware, volume 2596 of Lecture Notes in Com-
puter Science, pages 130–143. Springer-Verlag, 2003.

[7] T. J. Halloran, W. L. Scherlis, and J. R. Erenkrantz. Beyond
Code: Content management adn the open source develop-
ment portal. In 3rd ICSE International Workshop on Open
Source Software Engineering, 2003.

[8] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component Rank: Relative sig-
nificance rank for software component search. In Proceed-
ings of the 25th International Conference on Software Engi-
neering, pages 14–24, 2003.

[9] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic Categorization for Evolvable Software Archive.
In International Workshop on Principles of Software Evolu-
tion, pages 195–200, In conjunction with ESEC/FSE 2003,
Helsinki, Finland, 2003.

[10] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic Categorization Tool for Open Software Reposito-
ries. In Workshop on Open-Source in an Industrial Context,
In conjunction with OOPSLA 2003, Anaheim, CA, 2003.

[11] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. On
Automatic Categorization of Open Source Software. In 3rd
Workshop on Open Source Software Engineering, pages 79–
83, In conjunction with ICSE 2003, Portland, OR, 2003.

[12] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Techni-
cal Report 1999-66, Stanford Digital Library Technologies,
Jan. 1998. http://dbpubs.stanford.edu/pub/
1999-66.

[14] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly,
1999.

[15] SourceForge.net. http://sourceforge.net.

131

Author Index
International Workshop on Mining Software Repositories

MSR 2004

Alonso, O. 37 Matwin, S. 53

Amin, R. 112 McCarey, F. 117

Chapman, R. 75 Menzies, T. 22, 75

Chu-Carroll, M. 63 Murphy, G. 63

Cinnéide, M. 112, 117 Ng, R. 63

Crowston, K. 7 Ohira, M. 42

Cunanan, C. 75 Ostrand, T. 85

Dekhtyar, A. 22 Paquette, D. 106

Demeyer, S. 48 Penner, R. 106

Devanbu, P. 37 Perry, D. 90

Di Stefano, J. 75 Purushothaman, R. 90

Dong, X. 58 Rana, O. 122

El-Ramly, M. 64 Ripoche, G. 12, 80

Garg, P. 127 Robles, G. 28, 101

Gasser, L. 12, 80 Sakai, M. 42

German, D. 17,32 Sandusky, R. 12, 80

Gertz, M. 37 Sayyad Shirabad, J. 53

Ghosh, R. 28 Scacchi, W. 96

Godfrey, M. 58 Schneider, K. 106

González-Barahona, J. 28, 101 Stroulia, E. 32, 64

Gschwind, T. 127 Torii, K. 42

Gutwin, C. 106 Van Rysselberghe, F. 48

Hayes, J. 22 Veale, T. 112

Hollingsworth, J. 70 Weißgerber, P. 2

Howison, J. 7 Weyuker, E. 85

Inoue, K. 42, 127 Williams, C. 70

Jensen, C. 96 Wong, K. 32

Kapser, C. 58 Ying, A. 63

Kushmerick, N. 117 Yokomori, R. 42

Lethbridge, T. 53 Yusof, Y. 122

Liu, Y. 32 Zimmermann, T. 2

Lopez-Fernandez, L. 101 Zou, L. 58

Matsumoto, K. 42

133

