Database Techniques for the Analysis and Exploration of Software Repositories

Omar Alonsol, Premkumar T. Devanbu, Michael Gertz
Department of Computer Science
University of California at Davis
oralonso@ucdavis.edu, devanbu@cs.ucdavis.edu, gertz@cs.ucdavis.edu

Abstract

In a typical software engineering project, there is a
large and diverse body of documents that a development
team produces, including requirement documents,
specifications, designs, code, and bug reports.
Documents typically have different formats and are
managed in several repositories. The heterogeneity
among document formats and the diversity of
repositories make it often not feasible to query and
explore the repositories in an integrated and
transparent fashion during the different phases of the
software development process.

In this paper, we present a framework for the
analysis and exploration of software repositories. Our
approach applies database techniques to integrate and
manage different documents produced by a team. Tools
that exploit the database functionality then allow for the
processing of complex queries against a document
collection to extract trends and analyze correlations,
which provide important insights into the software
development and maintenance process.

We present a prototype implementation using the
Apache Web-server project as a case study.

1. Introduction

In a typical software engineering project, there is a
large and diverse body of assets, usually documents that
the development team produces over time. Those assets
include requirement documents, specifications, design
charts, code, bug reports, user manuals, etc. Different
people create and update those heterogeneous types of
documents that typically reside in different repositories.
At different phases in a software development process,
it would be useful to pose queries against these
repositories. For example, one might ask about the
status of a certain component, whether specified
requirements have been met, or the amount of time that

! The author is also affiliated with Oracle Corp.

it took to fix a bug. The diversity of the data models
and repositories from which these answers must be
drawn complicates the task of processing such queries.
This naturally augments the learning curve for new
members of the team. It also makes it difficult to derive
metrics and get insight into the software process.

In this paper, we present a framework for the
analysis and exploration of software repositories. Our
approach provides database techniques for the
integration, processing, and management of different
types of documents produced by the team over time.

Data integration enables us to manipulate different
data sources within a single conceptual framework. An
off-the-shelf query language and associated
optimization and evaluation tools let us process the data
to answer complex queries, even analytical questions to
extract trends and correlations. The manageability of
data is inherent to the use of a full-fledged modern
database system.

Our contribution is a framework for incremental
analysis and exploration of different data sources. Each
data source is unique in certain ways so different
techniques have to be applied to extract meaningful
information. Finally, the combination of different data
sources and extracted information within the framework
allows the mining of the repositories.

We present a case study using the development
mailing list of the Apache Web server project [1]. This
is the main communication vehicle between the
members of the team [2], [3]. We implemented a
prototype that shows our ideas in practice using a
commercial database product.

Current approaches on mining software repositories
consist on ad-hoc scripts tailored to a particular data
source. Those scripts manipulate the data source in the
file system and produce metrics [5], [7], [12]. More
recently, some research is starting to consider either
database or information retrieval techniques to aid the
manipulation of repositories [6], [8]. Finally, the social
aspect is also an important component of the mining

process like the identification of expert knowledge in a
team [11].

2. Integration

In any particular software project the content arrives
from different data sources in different formats. These
sources can include project documentation using word
processing template formats, web pages with
miscellaneous information in different websites, email
messages about project communication, reports from
bug databases, etc. The content, except source code, is
mainly free text with some rudimentary level of
structure, if any. The idea is then to apply some
structuring process to those data sources to produce
more standardized data that would be easier to load and
manipulate in a database. Once the content is in the
database we can use all the existing techniques available
to work on the sources like SQL to run queries, statistics
packages to run analytics and so on.

A very arduous and time-consuming task is to extract
information from a data source, modify it, and finally
load it into the database. This step involves knowing the
structure of the data source, the information that we
want to extract, and the metadata that is possible to
derive in the same process. For a web page, this implies
parsing HTML, extracting the text of the document and
metadata such as anchor text and other tags. In an email
message, the main source of data is obviously the
message but we also consider date, subject, and author
to be important metadata.

Ultimately the goal is to transform the data extracted
from a source into a more standard format that later will
be loaded into the database using an existing tool. The
final step is to generate all this information for a
particular loading tool. Once this step is completed, the
data is already in the database and it is possible to start
the analysis phase.

In our case study, the integration is fairly
straightforward and involves just one data source: email
messages.

3. Analysis and Exploration

Our methodology emphasizes on databases
techniques for managing the contents of all data
sources. There are several reasons why we want to use
databases. They provide the basic infrastructure for
large existing information systems in a wide range of
application domains. Today’s databases are more than
just tables and SQL statements. They can manage
multimedia content, and they provide functionality like
back up, recovery, replication, partitioning, etc. All
features that are useful for managing large-scale data

collections. From a data management point of view,
there are a number of benefits that we would like to take
advantage of:

1. Uniform way to access data storage and other
language access methods (JDBC, ODBC, SQL)
are standards for managing data.

2. Access to advanced data management features
(full text indexing, XML etc.): there is support
for new technologies like XML and specialized
indexes for managing text.

3. Analytics: most databases systems have built-in
APIs for performing advanced statistical
analysis that can be part of OLAP and data
mining applications.

We would like to process the data sources (in this
particular case an email data source), extract useful
information and then load the content into an
appropriate schema in the database. Instead of writing
scripts to extract some data, we use standard languages
like SQL or XPath to issue queries against the database.
In the following, we discuss some types of queries that
can pose, taking advantage of the capabilities we have
just described.

In the software engineering domain there is a wide
range of questions that we want to ask. We can
partition the set in two ways: technical and social.

In the technical aspect we would like to know if a
component has been tested, if the requirements for a
feature are met, or if a bug was fixed to name a few.

In the social area, as we all know, software
development involves people. Apart from productivity
metrics like numbers of line/year per developer, it is
also interesting to know who is the main owner of a
piece of the system, who is more active in different
phases, etc.

For both cases, one can trace people to assets
(documents) once all this information is in the database.
If we want to know who was the more productive
developer we can issue a query for the number of code
checked in for a particular person. Similar queries are
possible to get the number of bugs open/fixed, etc.

At first this looks like information that should always
be available at a glance but unfortunately, due to the
heterogeneity of the data sources, it is not always the
case. Without a proper database, basic facts are almost
impossible to retrieve and correlate in an automated
way.

So far, a query language can help when one is
interested in information that we know it is possible to
retrieve. For example, one might be interested in the
number of developers in a project or the severity of new
bugs after a release date. Those queries are typically
reports on the status of the development process. The

argument for using a database here is that is easy to run
any type of report.

Databases can also help in the discovery process.
The first step is to add information retrieval to already
existing data retrieval capabilities. Data retrieval, as
presented earlier, returns objects with a clear defined
condition. Information retrieval involves returning
objects about a query and, because of its probabilistic
nature, may contain minor errors or be ambiguous [9].

Full-text search over email messages is useful when
we are looking if a particular topic has been covered. It
is also possible to restrict the search for a particular time
frame. In our email example, it is interesting to retrieve
documents about a topic per year.

At this point we presented the functionality where a
user can run a query against the database. It is also
important to see the other side where the database can
arrange content semi-automatically using statistical
techniques.

There are different statistical techniques to discover
data patterns. In our framework, we use clustering to
discover grouping of documents [10]. In our case, we
want to use clustering as an unsupervised classification
of email messages that can give us an idea of what the
communication of the development team is all about.

We believe that the analysis and exploration involves
a number of techniques like query languages,
information retrieval, and data mining, among others.
Databases provide almost all those techniques in some
sort of low-level interface. Making them work together
to mine useful information is the challenge. In the
following section, we present a prototype
implementation of the ideas presented so far.

4. Prototype Implementation

This section describes Minero”, a prototype for
mining information from software repositories. There
are two parts of the implementation: the backend and
the user application. The backend consists of the
schema creation, content and metadata extraction from
email messages, and post-processing. The application is
a web interface that has a number of features available
like text searching, cluster browsing, and reporting,
among others.

Minero runs on top of an Oracle 9.2 database with
Solaris as the operating system. The database runs in
one machine while the middle-tier resides in a separate
one. The web application is a mix of PSP (PL/SQL
Server Pages), PL/SQL, and JSP (Java Server Pages)
code.

2 . .
www.db.cs.ucdavis.edu/minero

4.1. Backend

As mentioned earlier, there is a significant amount of
work that needs to be done to extract information from a
particular data source, making it available in a
consistent format, and finally loading it into a database.

For the case of the Apache development mailing list,
all email archives are available from the web [1]. Each
archive consists of a large number of email messages.
The first step is to run an email extractor script that
parses the archive and creates a file per email plus all
other metadata that is useful for later processing like
author, date, etc. The extractor also generates a special
file that a database utility will use to load all the content
into the Oracle database. As part of the loading process
there is the schema creation.

Now that the content is inside the database, we need
to perform some post-processing tasks. The tasks range
from simple clean up scripts to advanced information
retrieval and mining operations using the Oracle Text
API [4]. Figure 1 summarizes the loading and post-
processing steps.

As a simple first step, a few SQL scripts group email
messages by date and year. Now we can issue queries
that can give us information about the traffic on the
development list (stored in the table dev ml) in a
particular time frame.

select count (tk) from dev_ml
where mdate = '1995"';

Email Email SQL Loader
Source —P> | Extractor —— Utility

Full-text

searching Reports

Clustering

Figure 1. Extraction, loading, and post-processing of
Email messages.

Moving into more advanced features, we want to
make all the content searchable. For this, we create a
couple of full text indices that will allow users to search

for emails about particular topics. Oracle provides an
index type for full text searching that is available for
querying using an extension of SQL. Because of the
structure of an email message, we decided to create one
text index on the subject only and a second one on the
actual content. For example, to create a text index on a
table we issue the following command:

create index devml idx on dev_ml (text)
indextype is context
parameters (‘filter null filter’);

A full-text search query for the term Java then has
the following form:

select title,
from dev_ml
where contains (text,’Java’)>0;

author, date

The final step is to apply text mining techniques to
the collection for identification of patterns. One way of
doing that is to run a clustering algorithm that produces
a flat partition of the content. The clusters will give us a
“snapshot” of the content, and we can use them to refine
searches, browse content, and produce a more accurate
classification. The clusters can describe the areas of
main interest in the mailing list. Minero uses a k-Mean
clustering package that is also available with the
database. Usually the running time of this cluster
algorithm is O(n*k*l) where n is the number of

X Minero - Search Results - Microsoft Internet Explorer

File Edit View Favorkes Tools Help

documents, k is the number of clusters, and / the number
of iterations. For this prototype, we set & =200 and / =
6. The output consists of tables that contain the
description, metrics, and other data about the clusters
and documents that belong to them.

4.2. Web application

We have built a front-end web application for users
to explore and discover information from the mailing
list. The front-end consists of a user interface where the
user can search for email messages, browse clusters, run
reports, identify main contributors to the list, and
browse the entire collection by different attributes.

The user interface is based on a two-view model
where the left side shows structure, and the right side,
content of the collection of email messages. Minero
presents the search results in two structures: a list of hits
sorted by relevance score or a list of cluster descriptions
that the user can open to see the hits. The right frame
shows content (email messages) and message
operations. The operations are: message with
highlighted query terms, main themes, and gist
(document summary).

Figure 2 shows a particular cluster about “processes,
threads, MPM” and all the related email messages
(documents). Again, users can view the email messages
on the right frame and perform operations on them.

EEX

Author: - Date: 14-JUL-01

Re: [PATCH] Problems with MPM threaded
Author: Justin Erenkrantz - Date: 14-JUL-01

PATCH] POD and Threaded MPM...
Author: Justin Erenkrantz - Date; 11-JUL-01

Re: Suggested direction for fixing threaded mpm thread start
Author: "Bill Stoddard” - Date: 22-APR-01

Re: Mo processes left after big AB test
Author: "Paul J. Reder” - Date: 10-AFR-01

Qe - LD Ii] Ef] o) search "fj?FavmitEs @ reda G (- :-{ I 51 é%
Minero Search for: |javascript | [Search | Advariced Search Browse DEA
Clusters el S
i
x i > > = > 0K, 4dt"s committed...works swell fc

Cluster: 26 Size: 472 Description: processes, threads, == =

process, thread, child, threaded, mpm, worker, workers, > > » Uwm... This is an incredibly dangerou

parent, requests, number, idle, mutesx, scoreboard, restart, > » > one threaded process at a time. I <tk

each, children, memory, pod, model, serving, mailto, graceful, > > > that are hundreds of megs, which can
> > > happens 1f whiles my server is servinc

Re: [PATCH] Problems with MPM thireaded = > > graceful restart to re-config my sers

Author: - Date; 14-JUL-01 = > » the one with the thread serving a thr
> > > amctually restart for 3 hours.

Re: [PATCH] Problems with MPM threaded el

Author Justin Erenkrantz - Date: 13-JUL-01 * = > Ryan
> o>

Ee: [PATCH] POD and Threaded MER. e i

‘Author - Date: 11-JUL-01 = = I agree with you Ryan. Hawven't thought
that

Be: [PATCH] Problems with MEM threaded > > a combination of strategies is reguirec
> > managemesnt and one for status. The pro

us
> > to overcommit processes to compensate 1
Greg

> » suggests, put some bounds on the number

=

> I am 100% on board with splitting the s
> khounds on the numher of processes allowec
> how it is possible to get around the prok
> really thought it through though, so I cc
>
=

Ryan

g

] Error on page:

B Internat

Figure 2. Using clusters to examine the Email collection

5. Results

The current database contains about 72,000 email
messages. The content is searchable and can be restricted
by date. The collection is partitioned into clusters that are
available for browsing and discovery. There are a
number of reports available for mailing list participation
and overall message traffic per year.

Although our implementation is restricted to email
messages only, we report similar findings to [12] in terms
of the size and participation of the development
community.

Going a little bit further and using time as a variable,
we can report participation in the list per year using the
following query:

select author, count(tk) cnt from dev_ml
where mdate = '1998"'

group by author

order by cnt desc;

The past and present results are consistent with the
public information about current and past team members
[1]. We can also report that the main contributors have
been doing so consistently over the life of the project.

Other results that we consider interesting from the
software engineering perspective are as follows:

e We can identify two defined trends in the
collection clustering. One is obviously
technology. Examples are clusters about C/Unix,
security, memory management, and threads. The
second one is about process where the clusters are
about releases, beta versions, patches, and the
famous voting scheme for new features.

e Asin any project, the early stages contain lots of
process activities. Between the first and second
year, there is a lot of traffic about the voting
process, which later became stable.

e People change work places but continue
participating on the list. This shows the
commitment to certain open source projects.

6. Conclusions and Future Work

We presented a framework for the analysis and
exploration of software repositories that relies on
database techniques. We presented a prototype
implementation of the ideas discussed so far. The project
uses commercial database technology and it can be
applied to other open source projects. We illustrated that
a database is very convenient for this kind of projects. It
allows us to define a schema where we can later perform
queries or run more sophisticated mining techniques.

We were able to answer some software process
questions like participation on the development list and

also discover the technologies behind Apache using
clustering.

We plan to continue working on Minero from the
system perspective and on the overall methodology. We
also plan to integrate the current schema with the source
code repository and later the bug database so we can have
a unified and integrated view of the project and the
documents accompanying the project development.

7. References

[1] Apache Web server project http://httpd.apache.org

[2] R. Fielding and G. Kaiser, “The Apache HTTP Server
Project”. IEEE Internet Computing, 1(4), July/August
1997.

[3] R. Fielding “Shared Leadership in the Apache
Project”. Comm. of the ACM. Vol. 42, No. 4, April 1999.

[4] Oracle Text 9.2 Reference Guide (2003).

[5] D. German “Using software trails to rebuild the
evolution of software”, Int. Workshop on Evolution of
Large-scale Industrial Software Applications. The
Netherlands, September 2003.

[6] T. Zimmermann ef al. “Mining Versions Histories to
Guide Software Changes”, Proceedings of ICSE,
Scotland, UK, May 2004.

[7] A. Mockus, R. Fielding, and J. Herbsleb “Two Case
Studies of Open Source Software Development: Apache
and Mozill”. ACM TOSEM, Vol. 11, No. 3 July 2002.

[8] S. Kawaguchi ef al “Automatic Categorization
Algorithm for Evolvable Software Archive”, Proceedings
of IWPSE, September 2003.

[9] R. Baeza-Yates and B. Ribeiro-Neto Modern
Information Retrieval, Addison-Wesley (1999).

[10] A. Jain, M. Murty, and P. Flynn “Data Clustering: A
Review”. ACM Computing Surveys, Vol 31, No. 3,
September 1999.

[11] A. Mockus and J. Herbsleb “Expertise Browser: A
Quantitative Approach to Identifying Expertise”,
Proceedings of ICSE, Orlando FL. 2002.

[12] A. Mockus, R. Fielding, and Herbsleb “A Case
Study of Open Source Software Development: The
Apache Server”, Proceedings of ICSE Limerick, Ireland,
IEEE, 2000.

