
Data Mining for Software Process Discovery in Open Source Software
Development Communities

Chris Jensen, Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

{cjensen, wscacchi}@ics.uci.edu

Abstract

Software process discovery has historically been
an intensive task, either done through exhaustive
empirical studies or in an automated fashion using
techniques such as logging and analysis of command
shell operations. While empirical studies have been
fruitful, data collection has proven to be tedious and
time consuming. Existing automated approaches
have expedited collection of fine-grained data, but do
so at the cost of impinging on the developer's work
environment, few of who may be observed. In this
paper, we explore techniques for discovering
development processes from publicly available open
source software development repositories that exploit
advances in artificial intelligence. Our goal is to
facilitate process discovery in ways that are less
cumbersome than empirical techniques and offer a
more holistic, task-oriented view of the process than
current automated systems provide.

1. Introduction and Beginnings

Software process models represent a networked
sequence of activities, object transformations, and
events that embody strategies for accomplishing
software evolution [10]. Software process discovery
seeks to take artifacts of development (e.g. source
code, communication transcripts, and so forth), as its
input and elicit the networked sequence of events
characterizing the tasks that led to their development.
This process model may then be used as input to
other process engineering techniques such as
redesign and re-engineering.

Open source software development (OSSD)

communities are a rich opportunity for software
process discovery and analysis with the benefit that
so much of their process-relevant data is publicly
available. Though many researchers have sought
non-automated means of software process modeling,
often there is so much information that it becomes
intractable to subsume unaided, thus motivating the
push for tools to assist in process discovery. In our
past efforts [6], we have shown the feasibility of
automating the discovery of software process models
by using manual simulation of how such automated

techniques might operate as a basis to substantiate
that discovery and modeling of software development
processes in large OSSD communities such as
Mozilla, Apache, NetBeans, and Eclipse (consisting
of tens of thousands of developers continuously
contributing software artifacts to the community
repository) is both plausible and amenable to
automation. In this paper, we explore techniques for
searching OSSD Web repositories for process data,
relating these data in the form of process events, and
assigning them to meaningful orders as a process
model in an attempt to reduce the manual effort
necessary to discover and model software processes.

We take, as our process meta-model, that of Noll

and Scacchi [8]. Software processes are composed of
events: relations of agents, tools, resources, and
activities organized by control flow structures
dictating that sets of events execute in serial, parallel,
iteratively, or that one of the set is selectively
performed.

It has been shown [6] that OSSD community

Web repositories encode process data in terms of the
structure of the community repository, its content,
and its usage and update patterns. OSSD artifacts
vary along these three dimensions over time, and this
variance is the source of process events. To
effectively discover a software process, we must be
able capture these data and their changes. This may
be done through combined application of text and
link analysis techniques, as described below. We
propose the use of text analysis techniques for
extracting instances of process meta-model entities
from the content of the community repositories,
followed by link analysis to assert relationships
between the mined entities in the form of process
events. Next, we apply usage and update patterns to
guide integration of the results of text and link
analysis together in the form of a process model (see
Figure 1). Finally, we conclude with addressing the
knowable validity of discovered software process
models and future directions for continuing work.

Figure 1: Web artifacts are filtered through a process entity taxonomy to extract atomic process action
events, sequenced using temporal indications within the artifacts and reconstructed into a process using PRM

2. Text Analysis

The bulk of the process data is found within the
content of Web artifacts. Much of the mapping
consists of text extraction, matching between text
strings in artifacts such as web pages and email
messages and a taxonomy of process related
keywords [5]. In the case of web content, we are
especially looking for items like date stamps on email
messages to place the associated events in time,
document authors, and message recipients. This
matching is done using a name recognizer.

An inherent challenge to name recognition is that

many classes of lexical items we desire to recognize
are open sets since we cannot enumerate all possible
proper names they contain. Further, name
classification suffers from synonymy and polysemy-
the same concept represented using different terms,
and different concepts represented using the same
term, respectively. This frequently occurs between
OSSD communities, using terms such as release
manager rather than release coordinator to describe
the same role. Fortunately, these are well known
problems in text analysis and most text analysis
systems provide some support for managing them.
The SENSUS ontology system [3] is one such system
that attempts to automate much of the domain
modeling work allegedly covering most areas of
human expertise. This automation is critical
considering lexicographical differences across and
evolution within communities.

Different types of content yield different

opportunities for gathering data. Common to most

open source communities are mailing lists and
discussion forums, source repositories, community
newsletters, issue repositories, and binary release
sections, among others. The mere presence of these
suggests certain activities in the development
process. They also signal what types of data may be
contained within. If we just look at source code
repositories, we can derive a process specification of
a limited set of activities- those that involve changes
to the code. Similarly, issue and defect databases tell
us that some testing is done on which the issue
reports are based. In some communities, issue
reports are also used to file feature requests. Such
information may also be found within discussion
forums or email lists.

Although it may seem tempting to attempt to

tailor analysis of artifacts to their type (e.g. email
message, defect report, etc) to capitalize on the
structure of the artifact type thereby facilitating
analysis. While this approach would potentially lead
to increased performance in analysis of artifacts
conforming to the structure expected by the artifact
model, this structure varies widely between
communities. To achieve high performance using
artifact structure models requires development of
models, not only for each artifact type in a
community repository, but also for each artifact type
used by all repositories under study.

It is interesting to note that we may uncover

“how-to” guides or other partial process prescriptions
in examining the community repository. Like all
content, these may not accurately reflect the process
as it is currently enacted, if they ever did. This

suggests the need for probabilistic methods for
modeling software development processes to filter
noise within a process instance and accounting for
variance across instances.

By itself, the result of text extraction gives us the

raw ingredients of a process model. We look to link
analysis to put these ingredients together into atomic
process events.

3. Link Analysis

Text extraction allows us to ask questions such

as who is collaboration with whom. From this
information, we can construct a social network
[Madey, et al] for the community. Social networks
may identify developers that frequently collaborate,
but they do not tell us what the developers are doing,
and, more importantly, how they are doing it. One
way to associate what and how information is
through the use of probabilistic relational modeling
(PRM).

Probabilistic relational modeling [4] is somewhat

inspired by entity relationship modeling used to
describe databases. In the classical example, we
might have tables of movie actors, movies, and roles
actors have played in movies and want to learn
relationships between them. Conceptually, this is no
different from linking process agents playing a role to
complete an action (using various tools that consume
and produce resources). Probabilistic relational
modeling allows inference about individual process
entities while taking into account the relational
structure between them, unlike traditional approaches
that assume independence between entities. Why is
this the right approach? Software processes driven
by the choice of tools used in development. Tools
either dictate what and when activities are performed,
or tools are selected to support desired activities, and
to an extent, suggest methods of completing activities
(i.e. enforce process compliance). Developer roles
emerge to perform these activities and carry out
supplemental work not performed by development
tools. Further, process entity instances arising from
text analysis have other relationships. They are
related contextually to other entities in the artifacts in
which they are found. They are also related to
artifacts hyperlinked to those in which they are
present. Such contextual relationships arising from
the logical structure of the repository are also good
candidates for probabilistic relational modeling.
Indeed, doing so allows us to form process events
whose entities span multiple artifacts.

To learn relationships between process entities,

we must know the context of the entity with respect

to others. This context can be represented in two
ways. Extracting the URL of the artifact in which
each entity is located allows us to cross-reference that
entity with others in the same artifact, as well as other
artifacts in which that entity is located. Additionally,
if we look at the creation date of the artifact in which
it was located, we may be able to intuit that those
instances that are temporally distant may signal an
activity of lengthy duration multiple instances of the
same activity. This determination, however, is the
work of usage and update pattern analysis.

4. Usage and Update Patterns

Usage patterns, like content size, are indicators
of which areas of the Web space are most active,
which reinforces the validity of the data found therein
and also claims of what activities in the process may
be occurring at a given time. Web access logs, if
available, provide a rich source of data. Web page
hit counters and last update statistics are also useful
for this purpose.

Cadez [1] and Hong, et al [2] demonstrate two

techniques for capturing Web navigation patterns,
however neither can be done in a strictly noninvasive
manner. The first uses server logs and cannot provide
tours of the repository and the latter requires
members to access the community Web through a
proxy server used to track tours. Nevertheless, if we
can map tours of the community Web to process
events, we can get a sense of which activities are
dependent on which other activities, which can be
done in parallel, which sequences are done
iteratively.

Fortunately, most large OSSD communities use

content managing tools to perform versioning of not
only product source code, but of other artifacts in the
repository, as well. By analyzing changelogs we can
learn the frequency of Web updates, in addition to the
agent performing the update, and to some extent, the
tools used to create the artifact, given its type. Work
by Ripoche and Gasser [9] does this to an extent,
studying defect resolution status in open source
defect repositories. The approach may be
generalized, extended with using the text and link
analysis techniques given above, and applied to other
types of artifacts, though with somewhat less
precision due to the inferential nature of process
entity relationship construction.

Unfortunately, revision histories are not always

available. Since OSSD repositories are publicly
accessible, it is possible to spider the Web repository
periodically to track changes externally via diff tools,
though information regarding the precise time of

update and author would be lost. As an ethical
matter, periodic spidering increases the load on the
server that, for large repositories, is potentially
burdensome.

By examining usage and update patterns, it is

possible for us to detect process control flow
structures. If we merely order then by time, the set of
process events discovered is sequential. Iterations
can be teased out of the sequence by considering
patterns of repeated tours and updates of and to the
Web. Activities being performed in parallel may also
be discerned by examining non-intersecting
concurrent usage and update patterns. Further, by
analyzing the variance between iterations of the same
task, we can identify sets of alternate activities, if the
variance is small.

5. Process Model Verification

A critical question of software process discovery,
regardless of automation, is how we may discern if
the process discovered is a correct reflection of the
process enacted by the community. The likelihood of
arriving at an accurate model increases with the
amount of data examined, within the limitations of
the techniques applied. This is because the
confidence of an asserted relationship between
process entities increases with more positive
instances of those relationships. Likewise, weak
relationships are rejected due to insufficient evidence.
At the same time, relationships between entities
cannot be discovered if the entities are not in the list
of process-relevant terms we look for during text
extraction. Thus, the process model obtained is only
as good as the taxonomy.

6. Conclusion

In this paper, we have presented a novel

approach to discovering software processes from
OSSD Web repositories, combining techniques for
text analysis, link analysis, and of repository usage
and update patterns. Though we have focused our
discussion on open source repositories, given the
availability of the artifacts, we believe that these
techniques can be applied to closed source software
repositories, and given the appropriate domain
information, other types of processes, as well. Our
hope is that in doing so, we may increase
understanding of the process techniques that have led
to their success.

7. Acknowledgments

The research described in this report is supported
by grants from the National Science Foundation
#ITR-0083075 and #ITR-0205679 and #ITR-
0205724. No endorsement implied. Contributors to
work described in this paper include Mark Ackerman
at the University of Michigan Ann Arbor; Les Gasser
at the University of Illinois, Urbana-Champaign;
John Noll at Santa Clara University; and Margaret
Elliott at the UCI Institute for Software Research.

8. References

[1] Cadez, I.V., Heckerman, D., Meek, C., Smyth, P.,
and White, S. Visualization of Navigation Patterns on
a Web Site Using Model Based Clustering. In Proc.
2000 Knowledge Discovery and Data Mining
Conference, 280-284. (2000).

[2] Hong, J. Heer, S. Waterson, and J. Landay,
WebQuilt: A proxy-based approach to remote web
usability testing, ACM Transactions on Information
Systems, 19(3), 263-285. (2001).

[3] Hovy, E.H., A. Philpot, J.-L. Ambite, Y. Arens,
J.L. Klavans, W. Bourne, and D. Saroz. 2001. Data
Acquisition and Integration in the DGRC's Energy
Data Collection Project. In Proceedings of the dg.o
2001 Conference. Los Angeles, CA.

[4] Getoor, L., Friedman, N., Koller, D., Taskar B.
Learning Probabilistic Models of Link Structure,
Journal of Machine Learning Research, 2002.

[5] Jensen, C. Applying a Reference Framework to
Open Source Software Process Discovery. In
Proceedings of the First Workshop on Open Source
in an Industrial Context OOPSLA-OSIC03,
Anaheim, CA October 2003.

[6] Jensen, C. and Scacchi W. Simulating an
Automated Approach to Discovery and Modeling of
Open Source Software Development Processes. In
Proceedings of ProSim'03 Workshop on Software
Process Simulation and Modeling, Portland, OR May
2003.

[7] Madey, G., Freeh, V., and Tynan, R. “Modeling
the F/OSS Community: A Quantitative
Investigation,” in Free/Open Source Software
Development, ed., Stephan Koch, Idea Publishing,
forthcoming.

[8] Noll, J. and Scacchi, W. Specifying Process
Oriented Hypertext for Organizational Computing.
Journal of Network and Computer Applications 24,
(2001). 39-61.

[9] Ripoche, G. and Gasser, L. "Scalable Automatic
Extraction of Process Models for Understanding
F/OSS Bug Repair", submitted to the 2003
International Conference on Software & Systems
Engineering and their Applications (ICSSEA'03),
CNAM, Paris, France, December 2003.

[10] Scacchi, W. Process Models in Software
Engineering, in J. J. Marciniak (ed.), Encyclopedia of
Software Engineering, 2nd. Edition, 2002.

