Applying Social Network Analysis to the Information in CVS Repositories

Luis López-Fernández, Gregorio Robles, Jesús M. González Barahona, GSyC, Universidad Rey Juan Carlos, Madrid, Spain
{llopez,grex,jgb}@gsyc.escet.urjc.es

MSR 2004 (Edinburgh, UK)
25th May 2004
There is a lot of (too much?) information about libre software projects out there.

We’re starting to streamline the extraction of raw data (e.g., from CVS repositories).

We have to apply data mining and data interpretation techniques to get meaningful information.

Let’s explore approaches which were productive in other fields.
Main aims of the study

- To advance in the understanding of the social structure of libre software projects
- To characterize projects according to this structure
- To relate the evolution of a project to the evolution of its social structure
- To explore self-organization in the social structure of libre software projects
Methodology

- Download CVS history information from the repository for a libre software project
- Extract the information related to who committed what
- Build with it the committer and module networks
- Analyze the resulting networks using social network analysis
- Extract some conclusions
The commiter network

- One side of affiliation network
- Each vertex, a commiter (usually a developer)
- Edge: when there is contribution to at least one common module
- Weight of edges: commits by both commiters to all common modules
The module network

- Other side of the same affiliation network
- Each vertex, a module (usually a top-level directory)
- Edge: when there is at least one common commiter
- Weight of edges: commits by common committers to both modules
Both are a complex mesh

Module network for the Apache project, ca. February 2004
But they can be characterized

- Degree (number of connections per vertex)
- Weighted degree (in our case, by commits)
- Distance centrality (proximity to the rest of the network)
- Betweenness centrality (shortest paths traversing a vertex)
- Clustering coefficient (connectivity to the neighborhood)
- Weighted clustering coefficient (in our case, by commits)
- Community analysis (Girvan-Newman algorithm)
Apache: connection degree (committers network)

Apache, circa February 2004
Apache and GNOME clustering coefficient (modules network)

Apache (left), GNOME (right) circa February 2004
Apache, GNOME, KDE weighted clustering coefficient (modules network)

Apache (left), GNOME (center), KDE (right) circa February 2004
Apache connection degree (modules network)

2001 (top left) to 2004 (bottom right)
Apache modules community analysis (1999.01)

©2004 Jesús M. González Barahona Applying Social Network Analysis to the Information in CVS Repositories
Apache modules community analysis (2000.01)
Apache modules community analysis (2000.09)

©2004 Jesús M. González Barahona
Applying Social Network Analysis to the Information in CVS Repositories
Apache modules community analysis (2002.01)
Apache modules community analysis (2004.02)
Conclusions

- Methodology for studying the structure of libre software projects
- Captures both relationships between modules and committers
- First step to community analysis
- Access to traditional social network analysis tools
- Further work: characterization of projects