International Workshop on Mining Software Repositories, Edinburgh, 25.05.2004

Preprocessing CVS Data
for Fine-Grained Analysis

Thomas Zimmermann ! and Peter WeiRgerber ?

! Saarland University
2 Catholic University of Eichstatt-Ingolstadt

Motivation

Tom Ball et al. “If your version control system could talk...”
So, why is my CVS so silent?
1. CVS has limited query functionality and is slow.

= Copy CVS into a database

2. CVS splits up changes on multiple files.
= Infer transactions

3. CVS knows only files—but what about functions?
= Detect fine-grained changes

4. CVS contains unreliable data which is noise.
= Clean data

Preprocessing is the key to a talkative version control system.

Copy CVS into a Database

RCS file: /home/eclipse/org.eclipse.jdt.core/model/org/eclipse/jdt/core/IBuffer.java,v
Working file: [./org.eclipse.jdt.core/model/org/eclipse/jdt/core/IBuffer.java |

head: 1.17
branch:
locks: strict
access list: \ 4 \4
symbolic names: . . .
v _397: 1.16 Files Directories

v_396a: 1.16

Tags

v_382: 1.15
JDK_1_5: 1.15.0.2
v_381: 1.15

keyword substitution: o
total revisions: 24; selected revisions: 24
description:

Branches

revision 1.17

revision 1.15
date: 2003/05/26 16:13:24; author: pmulet; state: Exp; lines: +5 -1

date: 2004/01/13 15:48:42; author: jlanneluc; state: Exp; lines: +1 -1

Updated copyrights to 2004 ReViSions
revision 1.16

date: 2003/12/15 16:25:37; author: jlanneluc; state: Exp; lines: +15 -26

46040 \

branches: 1.15.2; | /

*** empty log message ***

____________________________ Transactions

revision 1.15.2.1
date: 2004/01/12 19:53:11; author: othomann; state: Exp; lines: +15 -26
Merge with HEAD

Create incremental copies with cvs rdiff -s or cvs status.

Infer Transactions: Time Windows

All changes by the same developer, with the same message,
made at the “same time” belong to one transaction.

Fixed Time Window Vo, Y0, [time(6;) — time(d;)] < T
w I%’ [C:1.4] D:1.3 E:1.5 same author +

®] ® ® same message

Infer Transactions: Time Windows

All changes by the same developer, with the same message,
made at the “same time” belong to one transaction.

Fixed Time Window Vo, Y0, [time(6;) — time(d;)] < T
w B:12] [C:i1.4] D:1.3 E:1.5 same author +
® ® ® ® same message
Sliding Time Window Vo, : 30, : [time(d;) — time(d;)] < T
\% B:1.2) [C:1.4] [D:1.3] E:1.5] same author +
® *——o ®

Same message

Infer Transactions: Time Windows

All changes by the same developer, with the same message,
made at the “same time” belong to one transaction.

Fixed Time Window Vo, Y0, [time(6;) — time(d;)] < T
w B:12] [C:i1.4] D:1.3 E:1.5 same author +
® ® ® ® same message
Sliding Time Window Vo, : 30, : [time(d;) — time(d;)] < T
\% M [C:1.4] [D:1.3] E:1.5] same author +
® ® ——=o

Same message

Infer Transactions: Time Windows

All changes by the same developer, with the same message,
made at the “same time” belong to one transaction.

Same message

Fixed Time Window Vo, Y0, [time(6;) — time(d;)] < T
w B:12] [C:i1.4] D:1.3 E:1.5 same author +
® ® ® ® same message
Sliding Time Window Vo, : 30, : [time(d;) — time(d;)] < T
\% M M M |E1—5, same author +
® ® ® *—

Infer Transactions: Time Windows

All changes by the same developer, with the same message,
made at the “same time” belong to one transaction.

Fixed Time Window Vo, Y0, [time(6;) — time(d;)] < T
w B:12] [C:i1.4] D:1.3 E:1.5 same author +
® ® ® ® same message
Sliding Time Window Vo, : 30, : [time(d;) — time(d;)] < T
\% B:1.2) [C:1.4] M E:1.5] same author +
® ® ® ® ;

Same message

Infer Transactions: Time Windows

All changes by the same developer, with the same message,
made at the “same time” belong to one transaction.

Fixed Time Window Vo, Y0, [time(6;) — time(d;)] < T
w B:12] [C:i1.4] D:1.3 E:1.5 same author +
® ® ® ® same message
Sliding Time Window Vo, : 30, : [time(d;) — time(d;)] < T
\% B:1.2) [C:1.4] [D:1.3] |E1—5, same author +
® ® ® ® g

Same message

All changed files within one transaction have to be different.

Infer Transactions: Commit Malls

All changes listed in a commit mail belong to one transaction.

CVSROOT: /cvs/gcc
Module name: gcc
Changes by: zack@gcc.gnu.org 2004-05-01 19:12:47

Modified files:
gecc/cp : Changelog decl.c

Log message:
* decl.c (reshape_init): Do not apply TYPE_DOMAIN to a VECTOR_TYPE.
Instead, dig into the representation type to find the array bound.

Patches:

http://.../cvsweb.cgi/gcc/gcc/cp/Changelog.diff?. . .&r2=1.4042
http://.../cvsweb.cgi/gcc/gecc/cp/decl.c.diff?.. .&r2=1.1204

Commit mails for GCC: http://gcc.gnu.org/mi/gcc-cvs/

Not every project provides useful commit mails.

Infer Transactions: Evaluation

We inferred transactions for 3 years GCC using commit mails.

Maximal Duration of a Commit
21:17 minutes for “merged with ra-merge-initial” (5,910 files)

=- Sliding time windows are superior to fixed ones.

Infer Transactions: Evaluation

We inferred transactions for 3 years GCC using commit mails.

Maximal Duration of a Commit
21:17 minutes for “merged with ra-merge-initial” (5,910 files)

=- Sliding time windows are superior to fixed ones.
Maximal Distance between two subsequent Checkins
Depends on file size, RCS file size, and # of revisions.

For almost all files below 3:00 minutes. Two exceptions:
gcc/libstdc++-v3/configure, gcc/gec/Changelog
=- Time windows should be at least 3:00 minutes.

Infer Transactions: Evaluation

We inferred transactions for 3 years GCC using commit mails.

Maximal Duration of a Commit
21:17 minutes for “merged with ra-merge-initial” (5,910 files)

=- Sliding time windows are superior to fixed ones.
Maximal Distance between two subsequent Checkins

Depends on file size, RCS file size, and # of revisions.

For almost all files below 3:00 minutes. Two exceptions:

gcc/libstdc++-v3/configure, gcc/gec/Changelog

= Time windows should be at least 3:00 minutes.
Minimal Distance between two similar Commits

Bad news: 0:02 minutes for “Mark ChangelLog”
Good news: All similar commits were really related.

=- Time windows have no upper bound (no duplicate files!)

Detect Fine-Grained Changes

What building blocks (e.g., functions, classes, sections, etc.)
have been changed between two revisions?

Rev.r, Rev.r,
void A(){ void A() {
void B(){ void F(){
void c(){ void B(){
void D(){ void D(){
x}éi? EQ{ (réi:: EO{

Detect Fine-Grained Changes

What building blocks (e.g., functions, classes, sections, etc.)
have been changed between two revisions?

1. Parser, for entities 2. Parser, for entities
A() A()

Rev.r, : Rev.r,
void A() { / B() l=42 Z F() \ void A() {
void B(){ void F(){
void c(){ o : —213 . le void B(){
void D(){ C() B() i=23; void D(){
void 20 \ / void B0
\D() D() /

E() E()

Detect Fine-Grained Changes

What building blocks (e.g., functions, classes, sections, etc.)
have been changed between two revisions?

1. Parser, for entities 2. Parser, for entities
diff
Rev.r, : Rev.r,
void A(){ / B() 1=42; giff new F() \ void A0 {
void B(){ void F(){
void c(){ o : —513 . le void B(){
void D(){ C() gone B() i=23; void D(){
el N a Az
\D() D() /
diff
E() E()

3. Compare matching entities

Noise: Large Transactions

Large transactions are usually outliers:

¢ “Change #include filenames from <foo.h> [sigh] to
<openssl.h>" (552 files, OPENSSL)

e “Change functions to ANSI C.” (491 files, OPENSSL)

Solution: Ignore all transactions with size above N.

Noise: Merge Transactions

Changed files

Branch can continue
- v

Branch
Point

More merges for a
single branch are
possible

Merge

O = Commit/Transaction Point

Noise: Merge Transactions

Changed files

Branch can continue
- v

Branch
Point

More merges for a
single branch are
possible

Merge

O = Commit/Transaction Point

Merges are noise for two reasons:

1. Merges contain unrelated changes — e.g. B and C

2. Merges duplicate related changes — e.g. A and B

Noise: Merge Transactions

Changed files

Branch can continue
- v

Branch
Point

More merges for a
single branch are
possible

Merge

O = Commit/Transaction Point

Two Solutions:

e The Fischer/Pinzger/Gall heuristic (ICSM 2003).

e Suspect & Verify approach based on log messages.

Problem:
“New isMerge(), isMergeWithConflicts(), and ...”

Lessons Learned

| Databases simplify the exploration of CVS.

| Sliding time windows are superior to fixed ones.

I Length of time windows should be within 3 and 5 minutes.
I Fine-grained analyses are feasible and worth while.

| Take a look at the ECLIPSE framework for comparing files:
org.eclipse.compare.structuremergeviewer

I Merges are dirty transactions and difficult to recognize.

Preprocessing is the key to any good and reliable analysis.

	Motivation
	Copy CVS into a Database
	Infer Transactions: Time Windows
	Infer Transactions: Time Windows
	Infer Transactions: Time Windows
	Infer Transactions: Time Windows
	Infer Transactions: Time Windows
	Infer Transactions: Time Windows
	Infer Transactions: Commit Mails
	Infer Transactions: Evaluation
	Detect Fine-Grained Changes
	Detect Fine-Grained Changes
	Detect Fine-Grained Changes
	Noise: Large Transactions
	Noise: Merge Transactions
	Noise: Merge Transactions
	Noise: Merge Transactions
	Lessons Learned

